[1] |
LADD M E, BACHERTT P, et al. Pros and cons of ultra-high-field MRI/MRS for human application[J]. Prog Nucl Magn Reson Spectrosc 2018, 109: 1-50.
|
[2] |
SEO J H, CHUNG J Y. A preliminary study for reference RF coil at 11.7 T MRI: Based on electromagnetic field simulation of hybrid-BC RF coil according to diameter and length at 3.0, 7.0 and 11.7 T[J]. Sensors, 2022, 22(4): 1512.
|
[3] |
BRUSCHI N, BOFFA G, INGLESE M. Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice[J]. Eur Radiol Exp, 2020, 4(1): 59.
doi: 10.1186/s41747-020-00186-x
pmid: 33089380
|
[4] |
GAO J H, LEI H, CHEN Q, et al. Magnetic resonance imaging: progresses and perspectiv[J]. Science China-Life Sciences, 2020, 50(11): 1285-1295.
|
|
高家红, 雷皓, 陈群, 等. 磁共振成像发展综述[J]. 中国科学: 生命科学, 2020, 50(11): 1285-1295.
|
[5] |
ZHENG H R, WU Y, HE Q, et al. Fast and high-resolution magnetic resonance imaging on high field system[J]. Life Science Instruments, 2018, 16: 29-54.
|
|
郑海荣, 吴垠, 贺强, 等. 基于高场磁共振的快速高分辨成像[J]. 生命科学仪器, 2018, 16: 29-54.
|
[6] |
BUDINGER T F, BIRD M D. MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: Technical feasibility, safety, and neuroscience horizons[J]. NeuroImage, 2018, 168: 509-531.
|
[7] |
ZARETSKAYA N, FISCHL B, REUTER M, et al. Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE[J]. NeuroImage, 2018, 165: 11-26.
|
[8] |
VACHHA B, HUANG S Y. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond[J]. Eur Radiol Exp, 2021, 5(1): 35.
doi: 10.1186/s41747-021-00216-2
pmid: 34435246
|
[9] |
MORRISON M A, LUPO J M. 7-T magnetic resonance imaging in the management of brain tumors[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 83-102.
doi: 10.1016/j.mric.2020.09.007
pmid: 33237018
|
[10] |
VERMA G, DELMAN B N, BALCHANDANI P. Ultrahigh field MR imaging in epilepsy[J]. Magn Reson Imaging Clin N Am, 2021, 29(1): 41-52.
doi: 10.1016/j.mric.2020.09.006
pmid: 33237014
|
[11] |
DUZEL E, COSTAGLI M, DONATELLI G, et al. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance[J]. Eur Radiol Exp, 2021, 5(1): 36-53.
doi: 10.1186/s41747-021-00221-5
pmid: 34435242
|
[12] |
DONATELLI G, CERAVOLO R, FROSINI D, et al. Present and future of ultra-high field MRI in neurodegenerative disorders[J]. Curr Neurol Neurosci, 2018, 18(6): 31-46.
doi: 10.1007/s11910-018-0841-7
pmid: 29679161
|
[13] |
GE J Q, GAO J H. A review of functional MRI application for brain research of Chinese language processing[J]. Magn Reson Lett, 2023, 3(1): 1-13.
|
[14] |
LEE S P, SILVA A C, UGURBIL K, et al. Diffusion-weighted spin-echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes[J]. Magn Reson Med, 1999, 42(5): 919-928.
pmid: 10542351
|
[15] |
LEWIS L D, SETSOMPOP K, ROSEN B R, et al. Stimulus-dependent hemodynamic response timing across the human subcortical-cortical visual pathway identified through high spatiotemporal resolution 7T fMRI[J]. NeuroImage, 2018, 181: 279-291.
doi: S1053-8119(18)30563-9
pmid: 29935223
|
[16] |
TIAN Y T, LI C M, CHEN M. Research progress of chemical exchange saturation transfer magnetic resonance imaging in neurodegenerative disease[J]. Chinese J Magn Reson Imaging, 2023, 14(1): 32-47.
|
|
田瑶天, 李春媚, 陈敏. 化学交换饱和转移成像在神经退行性疾病中的研究进展[J]. 磁共振成像, 2023, 14(1): 32-47.
|
[17] |
LIEBERT A, TKOTZ K, HERRLER J, et al. Whole-brain quantitative CEST MRI at 7T using parallel transmission methods and $\text{B}_{\text{1}}^{\text{+}}$ correction[J]. Magn Reson Med, 2021, 86(1): 346-362.
|
[18] |
MEISSNER J E, KORZOWSKI A, REGNERY S, et al. Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T[J]. J Magn Reson Imaging, 2019, 50(4): 1268-1277.
|
[19] |
PAECH D, WINDSCHUH J, OBERHOLLENZER J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro-Oncology, 2018, 20(12): 1661-1671.
|
[20] |
WANG G X, YANG H Y, LI J, et al. Overview and progress of X-nuclei magnetic resonance imaging in biomedical studies[J]. Magn Reson Lett, 2023, 3(4): 327-343.
|
[21] |
ZHANG H, CHENG G X, CHEN Y J, et al. Ultra-high field magnetic resonance imaging technology and clinical application[J]. Chinese Journal of CT and MRI, 2020, 18(8): 168-173.
|
|
张宏, 成官迅, 陈延军, 等. 超高场磁共振成像技术与临床应用[J]. 中国CT和MRI杂志, 2020, 18(8): 168-173.
|
[22] |
KRAFF O, FISCHER A, NAGEL A M, et al. MRI at 7 Tesla and above: demonstrated and potential capabilities[J]. J Magn Reson Imaging, 2015, 41(1): 13-33.
doi: 10.1002/jmri.24573
pmid: 24478137
|
[23] |
中商产业研究院. 2022年中国MRI行业市场规模及竞争格局预测分析[EB/OL]. [2022-11-01]. https://www.askci.com/news/chanye/20221101/1708442005688.shtml
|
[24] |
Business Wire. Global magnetic resonance imaging market report2023[EB/OL]. [2023-07-18]. https://www.businesswire.com/news/home/20230718139200/en/Global-Magnetic-Resonance-Imaging-Market-Report-2023-Increase-in-Healthcare-Spending-Drives-Growth
|
[25] |
TRATTNIG S, HANGEL G, ROBINSON S D, et al. Ultrahigh-field MRI: where it really makes a difference[J]. Radiologie, 2023, 64(s1): 1-8.
|
[26] |
健康界. 中国有多少台7 T磁共振[EB/OL]. [2023-09-05]. https://www.cn-healthcare.com/articlewm/20230902/content-1600638.html
|
[27] |
器械之家. 刚刚, 西门子7 T磁共振获NMPA批准[EB/OL]. [2022-06-10]. http://www.qixieke.com/Font/index/detailPage.html?id=773-115
|
[28] |
YANG W H. The development of ultra-high field magnetic resonance imaging[J]. Physics, 2019, 48 (4): 227-236.
|
|
杨文晖. 磁共振成像发展与超高场磁共振成像技术[J]. 物理, 2019, 48 (4): 227-236.
|
[29] |
LIU L H, JIANG B, CHEN D X, et al. The Status and challenge of the domestic manufacturing of superconduct magnetic resonance instruments in China[J]. Chinese J Magn Reson, 2022, 39(3): 345-355.
|
|
刘莲花, 蒋滨, 陈代谢, 等. 超导磁共振仪器设备国产化现状及挑战[J]. 波谱学杂志, 2022, 39(3): 345-355.
doi: 10.11938/cjmr20212961
|
[30] |
未来智库. 2023年辰光医疗研究报告: 国内唯二MRI超导磁体独立供应商, 新拓光伏市场[EB/OL]. [2023-07-13]. https://www.vzkoo.com/read/202307136a5b3949632e11ce1bb7e03d.html
|
[31] |
新浪财经网. 2022年中国磁共振行业成绩公布[EB/OL]. [2023-03-08]. https://finance.sina.com.cn/stock/med/zbsc/2023-03-28/doc-imynktuf8267041.shtml
|
[32] |
日商环球讯息有限公司. 全球超导磁体市场[EB/OL]. [2023-08.04]. https://cn.gii.tw/report/go1321211-superconducting-magnets.html
|
[33] |
Healthcare-in-Europe.com. 11.7 Tesla: First images from the world's most powerful MRI scanner[EB/OL]. [2024-03]. https://healthcare-in-europe.com/en/news/11-7-tesla-first-images-world-most-powerful-mri-scanner.html
|
[34] |
特斯拉(Tesla)官网. 核磁共振磁体介绍[EB/OL]. http://www.tesla.co.uk/chinese/magnet/tesla-engineering-magnet-division-suprconducting-magnets/tesla-engineering-magnet-division-mri-magnets.html
|
[35] |
美通社. ASG和西门子医疗联手交付超高场MRI系统[EB/OL]. [2023-01-18]. https://www.prnasia.com/story/390913-1.shtml
|
[36] |
中国科学报. 9.4T超高场人体磁共振成像超导磁体研制成功[EB/OL]. [2022-05-18]. https://www.cas.cn/cm/202205/t20220518_4834943.shtml
|
[37] |
QYResearch. 2024-2030全球与中国磁共振梯度线圈市场现状及未来发展趋势[EB/OL]. [2024-04-25]. https://www.qyresearch.com.cn/reports/3876734/magnetic-resonance-imaging-gradient-coil
|
[38] |
Dataintelo. MRI gradient coil market[EB/OL]. https://dataintelo.com/report/mri-gradient-coil-market
|
[39] |
新思界网. [聚焦]梯度系统是磁共振(MRI)设备重要组成我国整机企业以外部采购为主[EB/OL]. [2024-12-02]. https://mp.ofweek.com/medical/a556714690597
|
[40] |
普华有策. 2021-2026年磁共振射频线圈行业趋势及投资可行性分析报告报告[EB/OL]. https://www.phpolicy.com/chanpinyufuwu/491468.html
|
[41] |
WISE GUY reports. 全球MRI射频线圈市场研究报告[EB/OL]. [2024-09-04]. https://www.wiseguyreports.com/cn/reports/mri-rf-coil-market
|
[42] |
电子工程专辑(EET). 比最快超算快一亿亿倍!“九章三号”光量子计算原型机再度刷新记录[EB/OL]. [2023-10-11]. https://www.eet-china.com/news/202310115445.html
|
[43] |
The Next Web(TNW). Microsoft wants to revolutionize MRIs with quantum-inspired algorithms and HoloLens[EB/OL]. [2018-05-19]. https://thenextweb.com/news/microsoft-wants-to-use-quantum-inspired-algorithms-and-hololens-to-revolutionize-mris
|
[44] |
费米国家加速器实验室(Fermilab)官网. NYU Langone plans to partner with Fermilab’s SQMS to advance MRI analysis[EB/OL]. [2022-07-20]. https://news.fnal.gov/2022/07/nyu-langone-plans-to-partner-with-fermilabs-sqms-to-advance-mri-analysis/
|
[45] |
WANG M Y. Research status and development prospect of magnetic resonance imaging artificial intelligence[J]. Chinese J Magn Reson Imaging, 2023, 14(3): 1-5.
|
|
王梅云. 磁共振成像人工智能的研究现状及发展前景[J]. 磁共振成像, 2023, 14(3): 1-5.
|
[46] |
中国经济网. AI在医学影像领域应用提速[EB/OL]. [2023-05-19]. http://www.ce.cn/cysc/yy/hydt/202305/19/t20230519_38552560.shtml.
|
[47] |
中国信通院&36氪研究院. 《2020人工智能医疗产业发展蓝皮书》[EB/OL]. [2020-09-08]. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202009/P020200910495521359097.pdf
|
[48] |
中国报告大厅. 2024年人工智能医疗行业分析[EB/OL]. https://www.chinabgao.com/freereport/97253.html
|
[49] |
36氪研究院. 《2021年中国医疗AI行业研究报告》[EB/OL]. [2021-12-21]. https://13115299.s21i.faiusr.com/61/1/ABUIABA9GAAg_Ze1jgYogbjD1gE.pdf
|
[50] |
华经情报网. 2023年全球及中国MRI行业现状分析, 人均保有量有望进一步提升[EB/OL]. [2023-08-16]. https://www.huaon.com/channel/trend/918943.html
|
[51] |
奥泰医疗官网. 奥泰•历程2005-2020[OL]. http://alltechmed.com/corporate/history
|
[52] |
证券时报网. 跻身全球一流水平国产磁共振仪器再上新台阶[EB/OL]. [2023-09-12]. https://stock.stockstar.com/IG2023091200009408.shtml
|
[53] |
MA Y X, HAO Q L, ZHAO Y Q. Analysis of the development status of global high-end magnetic resonance imaging based on patents[J]. China Medical Devices, 2024, 39(4): 109-115.
|
|
马滢雪, 蒿巧利, 赵晏强. 基于专利的全球高端磁共振成像发展现状分析[J]. 中国医疗设备, 2024, 39(4): 109-115.
|