[1]Alberti G, Costantino U. Layered solids and their intercalation chemistry[J]. Compr Supramol Chem, 1996, 7: 1-23.[2]Bruce D W, O'Hare D. Inorganic Materials-Chapter 4: Inorganic Intercalation Compounds (2nd ed.)[M]. New York: John Wiley & Sons Ltd., 1996. 165-235.[3]Guzman R, Lavela P, Perez-Vicente C, et al. Intercalation chemistry of electron donating species into metal chalcogenides with interlayer interactions[J]. Trends Inorg Chem, 1998, 5: 161-181.[4]Jacobson A J. Solid State Chemistry: Compound-Chapter 6: Intercalation Reactions of Layered Compounds[M]. Oxford: Clarendon Press, 1992. 182-233.[5]O'Hare D. Inorganic intercalation compounds[J]. Inorg Mater, 1992: 165-235.[6]Rouxel J. Intercalation chemistry in transition metal dichalcogenides[J]. J Mater Educ, 1986, 8(1-2): 45-81.[7]Whittingham M S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[J]. Prog Solid State Chem, 1978, 12(1): 41-99.[8]Wilson J A, Yoffe A D. Transition metal dichalcogenides. Discussion and interpretation of the observed optical, electrical, and structural properties[J]. Advan Phys, 1969, 18(73): 193-335.[9]Edwards J C, Ellis P D. Solid-state molybdenum 95 NMR study of hydrodesulfurization catalysts. 2. Investigation of reduced/sulfided molybdena-alumina catalysts and the effect of promoter ions on "fresh" and reduced/sulfided molybdena-alumina[J]. Langmuir, 1991, 7(10): 2 117-2 134.[10]Bastow T J. 95Mo NMR: hyperfine interactions in MoO3, MoS2, MoSe2, Mo3Se4, MoSi2 and Mo2C[J]. Solid State Nucl Magn Reson, 1998, 12(4): 191-199.[11]d'Espinose de Lacaillerie J B, Gan Z. MAS NMR Strategies for the Characterization of Supported Molybdenum Catalysts[J]. Appl Magn Reson, 2007, 32(4): 499-511.[12]Panich A M, Shames A I, Rosentsveig R, et al. A magnetic resonance study of MoS2 fullerene-like nanoparticles[J]. J Phys: Condens Matter, 2009, 21(39): 395301/01-06.[13]Jakobsen H J, Bildsoe H, Skibsted J, et al. Natural abundance solid-state 95Mo MAS NMR of MoS2 reveals precise 95Mo anisotropic parameters from its central and satellite transitions[J]. Chem Commun, 2010, 46(12): 2 103-2 105.[14]Larsen F H, Jakobsen H J, Ellis P D, et al. Sensitivity Enhanced Quadrupolar Echo NMR of Half-Integer Quadrupolar Nuclei. Magnitudes and Relative Orientation of Chemical Shielding and Quadrupolar Coupling Tensors[J]. J Phys Chem A, 1997, 101(46): 8 597-8 606.[15]Kentgens A P M, Verhagen R. Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei[J]. Chem Phys Lett, 1999, 300(3-4): 435-443.[16]Schurko R W, Hung I, Widdifield C M. Signal enhancement in NMR spectra of half-integer quadrupolar nuclei via DFS-QCPMG and RAPT-QCPMG pulse sequences[J]. Chem Phys Lett, 2003, 379(1-2): 1-10.[17]Siegel R, Nakashima T T, Wasylishen R E. Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses[J]. Chem Phys Lett, 2004, 388(4-6): 441-445.[18]O'Dell L A, Schurko R W. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra[J]. Chem Phys Lett, 2008, 464(1-3): 97-102.[19]Massiot D, Farnan I, Gautier N, et al. 71Ga and 69Ga nuclear magnetic resonance study of [beta]-Ga2O3: resolution of four- and six-fold coordinated Ga sites in static conditions[J]. Solid State Nucl Magn Reson, 1995, 4(4): 241-248.[20]Tang J A, Masuda J D, Boyle T J, et al. Ultra-wideline 27Al NMR investigation of three- and five-coordinate aluminum environments[J]. ChemPhysChem, 2006, 7(1): 117-130.[21]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys: Condens Matter, 2002, 14(11): 2 717-2 744.[22]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Z Kristallogr, 2005, 220(5-6): 567-570.[23]Sutrisno A, Terskikh V V, Huang Y. A natural abundance 33S solid-state NMR study of layered transition metal disulfides at ultrahigh magnetic field[J]. Chem Commun, 2009, (2): 186-188.[24]Bronsema K D, De Boer J L, Jellinek F. The structure of molybdenum diselenide and disulfide[J]. Z Anorg Allg Chem, 1986, 540-541: 15-17.[25]Jellinek F. Sulfides of the transition metals of Groups IV, V, and VI[J]. Arkiv Kemi, 1963, 20: 447-480.[26]Kusawake T, Takahashi Y, Wey M Y, et al. X-ray structure analysis and electron density distributions of the layered compounds CuxTiS2[J]. J Phys: Condens Matter, 2001, 13(44): 9 913-9 921.[27]Schutte W J, De Boer J L, Jellinek F. Crystal structures of tungsten disulfide and diselenide[J]. J Solid State Chem, 1987, 70(2): 207-209.[28]Spijkerman A, de Boer J L, Meetsma A, et al. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3+2)dimensional superspace[J]. Phys Rev B: Condens Matter, 1997, 56(21): 13 757-13 767.[29]Berger S, Bock W, Marth C F, Raguse B, et al. Titanium-47,49 NMR of some titanium compounds[J]. Magn Reson Chem, 1990, 28(6): 559-560.[30]Bastow T J, Gibson M A, Forwood C T. 47,49Ti NMR: hyperfine interactions in oxides and metals[J]. Solid State Nucl Magn Reson, 1998, 12(4): 201-209.[31]Padro D, Howes A P, Smith M E, et al. Determination of titanium NMR parameters of ATiO3 compounds: correlations with structural distortion[J]. Solid State Nucl Magn Reson, 2000, 15(4): 231-236.[32]Bastow T J, Whitfield H J. 137Ba and 47,49Ti NMR. Electric field gradients in the non-cubic phases of BaTiO3[J]. Solid State Commun, 2001, 117(8): 483-488.[33]Gervais C, Smith M E, Pottier A, et al. Solid-state 47,49Ti NMR determination of the phase distribution of titania nanoparticles[J]. Chem Mater, 2001, 13(2): 462-467.[34]Padro D, Jennings V, Smith M E, et al. Variations of Titanium Interactions in Solid State NMR-Correlations to Local Structure[J]. J Phys Chem B, 2002, 106(51): 13 176-13 185.[35]MacKenzie K J D, Smith M E. Multinuclear Solid-State NMR of Inorganic Materials[M]. Amsterdam: Pergamon, 2002, 740.[36]Ganapathy S, Gore K U, Kumar R, et al. Multinuclear (27Al, 29Si, 47,49Ti) solid-state NMR of titanium substituted zeolite USY[J]. Solid State Nucl Magn Reson, 2003, 24(2-3): 184-195.[37]Gervais C, Veautier D, Smith M E, et al. Solid state 47,49Ti, 87Sr and 137Ba NMR characterization of mixed barium/strontium titanate perovskites[J]. Solid State Nucl Magn Reson, 2004, 26(3-4): 147-152.[38]Erben M, Ruzicka A, Picka M, et al. 47,49Ti NMR spectra of half-sandwich titanium(IV) complexes[J]. Magn Reson Chem, 2004, 42(4): 414-417.[39]Larsen F H, Farnan I, Lipton A S. Separation of 47Ti and 49Ti solid-state NMR lineshapes by static QCPMG experiments at multiple fields[J]. J Magn Reson, 2006, 178(2): 228-236.[40]Wagner G W, Procell L R, Munavalli S. 27Al, 47,49Ti, 31P, and 13C MAS NMR Study of VX, GD, and HD Reactions with Nanosize Al2O3, Conventional Al2O3 and TiO2, and Aluminum and Titanium Metal[J]. J Phys Chem C, 2007, 111(47): 17 564-17 569.[41]Ballesteros R, Fajardo M, Sierra I, et al. Solid-State 49/47Ti NMR of Titanium-Based MCM-41 Hybrid Materials[J]. Langmuir, 2009, 25(21): 12 706-12 712.[42]Zhu J, Trefiak N, Woo T K, et al. A 47/49Ti Solid-State NMR Study of Layered Titanium Phosphates at Ultrahigh Magnetic Field[J]. J Phys Chem C, 2009, 113(23): 10 029-10 037.[43]Tarasov V P, Kirakosyan G A, Padurets L N. 2H and 47,49Ti nuclear magnetic resonance in the gamma phase of titanium deuterides TiDx[J]. Phys Solid State, 2010, 52(3): 493-503.[44]Rossini A J, Hung I, Schurko R W. Solid-State 47/49Ti NMR of Titanocene Chlorides[J]. J Phys Chem Lett, 2010, 1(20): 2 989-2 998.[45]Eichele K, Wasylishen R E W. Solids: Solid-State NMR Simulation Package, v. 1.17.30[CP]. 2001.[46]Peng L, Liu Y, Kim N, et al. Detection of Bronsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques[J]. Nat Mater, 2005, 4(3): 216-219.[47]Dogan F, Hammond K D, Tompsett G A, et al. Searching for Microporous, Strongly Basic Catalysts: Experimental and Calculated 29Si NMR Spectra of Heavily Nitrogen-Doped Y Zeolites[J]. J Am Chem Soc, 2009, 131(31): 11 062-11 079.[48]Guan J, Li X, Yang G, et al. Interactions of phosphorous molecules with the acid sites of H-Beta zeolite: Insights from solid-state NMR techniques and theoretical calculations[J]. J Mol Catal A: Chem, 2009, 310(1-2): 113-120.[49]Brouwer D H, Moudrakovski I L, Darton R J, et al. Comparing quantum-chemical calculation methods for structural investigation of zeolite crystal structures by solid-state NMR spectroscopy\[J\]. Magn Reson Chem, 2010, 48(S1): S113-S121.[50]Chapman R P, Bryce D L. A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acid hydrochlorides[J]. Phys Chem Chem Phys, 2007, 9(47): 6 219-6 230.[51]Lo A Y H, Hanna J V, Schurko R W. A theoretical study of 51V electric field gradient tensors in pyrovanadates and metavanadates[J]. Appl Magn Reson, 2007, 32(4): 691-708.[52]Cuny J, Messaoudi S, Alonzo V, et al. DFT calculations of quadrupolar solid-state NMR properties: some examples in solid-state inorganic chemistry[J]. J Comput Chem, 2008, 29 (13): 2 279-2 287.[53]Yan Z, Kirby C W, Huang Y. Directly Probing the Metal Center Environment in Layered Zirconium Phosphates by SolidState 91Zr NMR\[J\]. J Phys Chem C, 2008, 112(23): 8 575-8 586.[54]Zhu J, Lin Z, Yan Z, et al. 91Zr and 25Mg solid-state NMR characterization of the local environments of the metal centers in microporous materials[J]. Chem Phys Lett, 2008, 461(4-6): 260-265.[55]O'Dell L A, Schurko R W. Static solid-state 14N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids[J]. Phys Chem Chem Phys, 2009, 11(32): 7 069-7 077.[56]Bastow T J, Smith M E, Stuart S N. Observation of zirconium-91 NMR in zirconium-based metals and oxides[J]. Chem Phys Lett, 1992, 191(1-2): 125-129.[57]Hung I, Schurko R W. Solid-State 91Zr NMR of Bis(cyclopentadienyl)-dichlorozirconium(IV)[J]. J Phys Chem B, 2004, 108(26): 9 060-9 069.[58]Pauvert O, Fayon F, Rakhmatullin A, et al. 91Zr Nuclear Magnetic Resonance Spectroscopy of Solid Zirconium Halides at High Magnetic Field[J]. Inorg Chem, 2009, 48(18): 8 709-8 717.[59]Rossini A J, Hung I, Johnson S A, et al. Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors[J]. J Am Chem Soc, 2010, 132(51): 18 301-18 317.[60]Fedotov M, Belyaev A. A study of the hydrolysis of ZrF6 2- and the structure of intermediate hydrolysis products by 19F and 91Zr NMR in the 9.4 T field[J]. J Struct Chem, 2011, 52(1): 69-74.[61]Lapina O B, Khabibulin D F, Terskikh V V. Multinuclear NMR study of silica fiberglass modified with zirconia[J]. Solid State Nucl Magn Reson, 2011, 39(3-4): 47-57.[62]Wu X L, Lieber C M. Hexagonal domain-like charge density wave phase of tantalum disulfide determined by scanning tunneling microscopy\[J\]. Science, 1989, 243(4899): 1 703-1 705.[63]Naito M, Nishihara H, Tanaka S. NMR study of tantalum-181 in the commensurate charge density wave state of 1T tantalum diselenide and 1T tantalum disulfide[J]. J Phys C: Solid State Phys, 1983, 16(12): 387-393.[64]Naito M, Tanaka S. NMR study of tantalum-181 in the commensurate charge-density-wave state of 1T tantalum diselenide and 1T tantalum disulfide single crystals: a microscopic investigation of the three-dimensional ordering of the charge density waves[J]. J Phys Soc Jpn, 1984, 53(4): 1 217-1 220.[65]Belton P S, Cox I J, Harris R K. Experimental sulfur-33 nuclear magnetic resonance spectroscopy[J]. J Chem Soc, Faraday Trans 2, 1985, 81(1): 63-75.[66]Eckert H, Yesinowski J P. Sulfur-33 NMR at natural abundance in solids[J]. J Am Chem Soc, 1986, 108(9): 2 140-2 146.[67]Hinton J F. Sulfur-33 NMR spectroscopy[J]. Annu Rep NMR Spectrosc, 1987, 19: 1-34.[68]Bastow T J, Stuart S N. NMR study of the zinc chalcogenides (ZnX, X=O, S, Se, Te)[J]. Phys Status Solidi B, 1988, 145(2): 719-728.[69]Wagler T A, Daunch W A, Rinaldi P L, et al. Solid state 33S NMR of inorganic sulfides[J]. J Magn Reson, 2003, 161(2): 191-197.[70]Couch S, Howes A P, Kohn S C, et al. 33S solid state NMR of sulphur speciation in silicate glasses[J]. Solid State Nucl Magn Reson, 2004, 26(3-4): 203-208.[71]Wagler T A, Daunch W A, Panzner M, et al. Solid-state 33S MAS NMR of inorganic sulfates[J]. J Magn Reson, 2004, 170(2): 336-344.[72]d'Espinose de Lacaillerie J B, Barberon F, Bresson B, et al. Applicability of natural abundance 33S solid-state NMR to cement chemistry[J]. Cem Concr Res, 2006, 36(9): 1 781-1 783.[73]Jakobsen H J, Bildsoee H, Skibsted J, et al. A strategy for acquisition and analysis of complex natural abundance 33S solidstate NMR spectra of a disordered tetrathio transitionmetal anion\[J\]. J Magn Reson, 2010, 202(2): 173-179. [74]Moudrakovski I, Lang S, Patchkovskii S, et al. High Field 33S Solid State NMR and First-Principles Calculations in Potassium Sulfates[J]. J Phys Chem A, 2010, 114(1): 309-316.[75]O'Dell L A, Moudrakovski I L. Testing the sensitivity limits of 33S NMR: An ultra-wideline study of elemental sulfur[J]. J Magn Reson, 2010, 207(2): 345-347.[76]Pallister P J, Moudrakovski I L, Ripmeester J A. High-field multinuclear solid-state nuclear magnetic resonance (NMR) and first principle calculations in MgSO4 polymorphs[J]. Can J Chem, 2011, 89(9): 1 076-1 086.[77]O'Dell L A, Ratcliffe C I. Crystal structure based design of signal enhancement schemes for solid-state NMR of insensitive half-integer quadrupolar nuclei[J]. J Phys Chem A, 2011, 115(5): 747-752.[78]Yates J R, Pickard C J, Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials[J]. Phys Rev B: Condens Matter Mater Phys, 2007, 76(2): 024401/0111.[79]Yates J R, Pickard C J, Payne M C, et al. Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei with pseudopotentials and the zeroth-order regular approximation[J]. J Chem Phys, 2003, 118(13): 5 746-5 753.[80]Pyykko P. Year2008 nuclear quadrupole moments[J]. Mol Phys, 2008, 106(16-18): 1 965-1 974.[81]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03 Program, Rev. B.03[CP]. Gaussian, Inc.: Pittsburgh, PA, 2003.[82]Huzinaga S, Andzelm J, Klobukowski M, et al. Gaussian Basis Sets for Molecular Calculations[M]. New York: Elsevier, 1984. 16, 426.[83]Bryce D L, Wasylishen R E. A 95Mo and 13C solid-state NMR and relativistic DFT investigation of mesitylenetricarbonylmolybdenum(0) a typical transition metal pianostool complex\[J\]. Phys Chem Chem Phys, 2002, 4(15): 3 591-3 600.[84]Adiga S, Aebi D, Bryce D L. EFGShield a program for parsing and summarizing the results of electric field gradient and nuclear magnetic shielding tensor calculations[J]. Can J Chem, 2007, 85(7-8): 496-505. |