波谱学杂志, 2023, 40(3): 341-364 doi: 10.11938/cjmr20233051

综述评论

高频高场下EPR谱仪的研究进展

孔令文1,2, 匡光力,1,2,*, 吴向阳2

1.安徽大学,安徽 合肥 230601

2.中国科学院强磁场科学中心,安徽 合肥 230031

Research Progress of EPR Spectrometer Under High Frequency and High Field

KONG Lingwen1,2, KUANG Guangli,1,2,*, WU Xiangyang2

1. Anhui University, Hefei 230601, China

2. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China

通讯作者: *Tel: 13956033702, E-mail:kuang_gl@ipp.ac.cn.

收稿日期: 2023-01-10   网络出版日期: 2023-03-21

基金资助: 安徽省重点研究与开发计划专项(2022a05020036); 合肥综合性国家科学中心强光磁关键技术预研项目(QGCYY03)

Corresponding authors: *Tel: 13956033702, E-mail:kuang_gl@ipp.ac.cn.

Received: 2023-01-10   Online: 2023-03-21

摘要

电子顺磁共振(EPR)是一种研究磁性材料微观信息的测量手段.由于早期的EPR研究受到磁场强度和微波频率的限制,一些材料相关的微观信息并不能得到清晰地显示.近些年来,随着强磁场技术和微波技术的发展,连续波电子顺磁共振(cw-EPR)谱仪和脉冲电子顺磁共振(pulsed EPR)谱仪在高频高场下得到了充分的应用,同时谱仪的灵敏度和分辨率等技术指标也得到了比较好的提升.本文主要介绍了在高频高场下EPR谱仪的原理和构造,国内外发展历程和研究现状,以及在相关领域的最新应用.

关键词: 电子顺磁共振(EPR); EPR谱仪; 综述; 高频高场

Abstract

Electron paramagnetic resonance (EPR) is a measurement method to research the microscopic information of magnetic materials. Because early EPR studies were limited by magnetic field strength and microwave frequency, some microscopic information of materials could not be clearly displayed. In recent years, with the development of high magnetic field technology and microwave technology, continuous wave electron paramagnetic resonance (cw-EPR) spectrometer and pulsed electron paramagnetic resonance (pulsed EPR) spectrometer have been fully used under high frequency and high field, and the sensitivity, spectral resolution and other performance indicators of the spectrometer have also been improved. This paper mainly introduces the principle and structure of EPR spectrometer under high frequency and high field, its development history and research status both domestically and internationally, and the latest application in related fields.

Keywords: electron paramagnetic resonance (EPR); EPR spectrometer; review; high frequency and high field

PDF (1922KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孔令文, 匡光力, 吴向阳. 高频高场下EPR谱仪的研究进展[J]. 波谱学杂志, 2023, 40(3): 341-364 doi:10.11938/cjmr20233051

KONG Lingwen, KUANG Guangli, WU Xiangyang. Research Progress of EPR Spectrometer Under High Frequency and High Field[J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 341-364 doi:10.11938/cjmr20233051

引言

电子顺磁共振(EPR)又称为电子自旋共振(ESR),是唯一能够直接追踪未配对电子,并在原位和非损坏条件下提供微观尺度上电子、轨道与原子核等相关信息的研究手段.EPR谱图的特征gii=x, y, z)因子反映着微结构的稳定性、对称性和有序性[1].自苏联科学家Zavoisky于1944年首次观察到EPR现象后[2],EPR理论和技术开始逐渐发展起来,并被进行了大量深入的研究.然而,EPR的一些限制因素(比如相对较低的分辨率和灵敏度)也慢慢显现,限制了其有效应用范围.低分辨率会导致无结构线和共振谱峰重叠,掩盖目标研究材料的相关特征.低灵敏度会降低测量精度和分辨率,从而会掩盖弱信号,在测量低浓度样品或者信号较弱的样品时可能无法得到准确的结果.灵敏度通常与微波频率成正比,微波频率越高,最小可探测自旋数(所测谱线信噪比为1时对应的自旋数目)越小,灵敏度越高[3].而大幅度提高EPR谱仪的微波频率和所处磁场的强度,即高频高场下,EPR谱仪的基本特性(包括灵敏度和分辨率)会得到相应提升.目前,研究人员已经开发出较为成熟的高频高场EPR谱仪,主要分为连续波电子顺磁共振(cw-EPR)谱仪和脉冲电子顺磁共振(pulsedEPR)谱仪,为生物、化学、物理等领域的研究人员提供了更好的研究手段.

本文主要分为五个部分:第一部分介绍EPR的基本原理;第二部分介绍高频高场EPR谱仪的优势;第三部分介绍EPR谱仪由低频低场至高频高场的发展历程;第四部分介绍高频高场EPR谱仪的构造及研制;第五部分介绍高频高场EPR谱仪在相关领域的最新应用;最后进行总结与展望.

1 EPR的基本原理

EPR用于研究含有未成对电子的磁性物质的微观结构,主要研究对象包括顺磁性物质、铁磁性物质、反铁磁性物质以及亚铁磁性物质.

图1展示了EPR基本原理.电子具有$S=1/2$的自旋量子数,在外磁场中,电子自旋磁量子数${{M}_{S}}$可以为$+1/2$或$-1/2$.在外部磁场${{B}_{0}}$的作用下,电子自旋发生塞曼分裂,从而分为两种取向:${{M}_{S}}=-1/2$时,对应于低能级${{E}_{\beta }}=-g{{\mu }_{B}}{{B}_{0}}/2$;${{M}_{S}}=+1/2$时,对应于高能级${{E}_{\alpha }}=g{{\mu }_{B}}{{B}_{0}}/2$.因此,α态和β态之间的能级差$\Delta E=g{{\mu }_{B}}{{B}_{0}}$.这时,施加一个频率为v的微波,其方向垂直于外加磁场${{B}_{0}}$,如果光量子能量hv与能级差$\Delta E$相等(即满足了电子自旋系统从β态跃迁到α态所需要的能量),那么电子自旋系统会吸收这个频率的微波,从${{E}_{\beta }}$跃迁到${{E}_{\alpha }}$,从而产生电子顺磁共振.共振条件即为满足(1)式:

$hv=g{{\mu }_{B}}{{B}_{0}}$

图1

图1   电子顺磁共振原理[1]

Fig. 1   Principle of electron paramagnetic resonance[1]


其中,h为普朗克常数,v为微波频率,g为波谱分裂因子,${{\mu }_{B}}$为玻尔磁子,${{B}_{0}}$为外加磁场强度.

目前,EPR实验有两种方法:(1)扫场法,即固定微波频率v,不断改变外加磁场强度${{B}_{0}}$,从而满足共振条件;(2)扫频法,即固定外加磁场强度${{B}_{0}}$,不断改变微波频率v,从而满足共振条件.然而,在技术层面,磁场上连续、稳定、微小的变化相对容易实现,因此现在的EPR实验大部分采用扫场法[1,4].

2 高频高场EPR谱仪的优势

Cho[5]的论文中概述了高频高场(B ≥3 T,V ≥90 GHz)EPR谱仪的4个主要优势:

①更高的谱图分辨率和g值测量分辨率[6-9].电子自旋能级的能级差$\Delta E$与外磁场强度${{B}_{0}}$成正比,高频率下测量的EPR谱图中的谱峰重叠程度降低,谱图分辨率得以提高,从而提高g值测量的分辨率.图2为酪氨酸缺失的铜蓝蛋白Azurin突变体(AzC-W48)中的色氨酸自由基在不同的微波频率(产生电子自旋共振时的微波频率)下的模拟粉末模式EPR谱图[6],为了便于比较,信号强度按比例调整至相同的高度.从中可以看出,在W波段(95 GHz)下,信号发生重叠,无法据其分析物质的微观信息;随着磁场强度和频率的增加,EPR谱图的分辨率不断提高,有利于g值的测量.

图2

图2   酪氨酸缺失的铜蓝蛋白Azurin突变体(AzC-W48)中的色氨酸自由基在不同的微波频率(产生电子自旋共振时的微波频率)下的模拟粉末模式EPR谱图. (a) W波段 (95 GHz);(b) 350 GHz;(c) 700 GHz[6]

Fig. 2   Simulated powder pattern EPR spectra for the tryptophan radical in tyrosine-depleted azurin mutant (AzC-W48) at different microwave frequencies producing electron spin resonance. (a) W-band (95 GHz); (b) 350 GHz; (c) 700 GHz[6]


②更高的灵敏度和自旋极化[5,10-14].从(2)式可以得出,微波频率v越高,最小可探测自旋数(所测谱线信噪比为1时对应的自旋数目)${{N}_{\min }}$越小,灵敏度越高.

${{N}_{\min }}=\frac{K{{V}_{c}}}{{{Q}_{U}}\eta {{v}^{2}}\sqrt{{{P}_{0}}}}$

其中,K为常数,${{V}_{c}}$为样品体积,${{Q}_{U}}$为空载Q值,η为填充因子,v为微波频率,${{P}_{0}}$为微波功率.

微波频率与磁场强度越高,EPR信号越强,发生EPR现象时电子自旋极化程度也就越高,有利于获得更高质量的EPR谱图.图3为$g=2$,$S=1/2$系统在两个不同频率下的电子自旋极化与温度的关系[5],可以看出,相同温度下,频率越高,自旋极化程度越高.

图3

图3   g = 2的S = 1/2系统在两个不同微波频率下的电子自旋极化与温度的关系[5]

Fig. 3   The relationship between electron spin polarization and temperature for S = 1/2 system with g = 2 at two different microware frequencies[5]


③更好的时间分辨率[15-17].时间分辨率是指在进行实验时,对于样品内部或周围发生的动力学过程或现象,仪器可以测量并记录的最小时间间隔.这个时间间隔越小,就能够更准确地测量样品内部的动力学行为,从而获得更详细的信息.与连续波EPR不同,脉冲EPR中经常需要更高的${{B}_{1}}$(共振腔内的磁场强度),以便驱动具有非连续微波激励的短脉冲的状态之间的转换.为此,许多脉冲EPR谱仪采用各种类型的微波或光学腔体和谐振器,在样品中产生所需的高输出${{B}_{1}}$.然而,采用腔体的一个缺点是存在死时间(${{T}_{\text{D}}}$),腔体内振铃的存在导致无法在死时间内进行测量.由(3)式[16]和(4)式[18]可以看出,微波频率越高,振铃持续时间$r(t)$越小,${{T}_{\text{D}}}$越小,从而可以在更早的时间进行测量,产生更好的时间分辨率.

$r(t)\propto \exp \left( -\frac{2\pi vt}{Q} \right)$

(3)式中,Q为腔体的品质因子.

${{T}_{\text{D}}}=mr(t)$

(4)式中,m为时间常数.

④不容易受到分子运动引起的平均效应的影响[19-21].在低频EPR时间尺度上显得快速的过程在高频EPR时间尺度上则显得缓慢(分辨率从低到高),这种现象称为快照效应.分子的扩散运动使得EPR谱线信息有限,EPR谱线数据只是一段时间内的平均值,这种现象称为分子运动引起的平均效应.在高频高场下,分子中电子自旋运动的频率低,而EPR的微波频率高且分辨率高,与低频EPR对比像是用高速照相机那样拍下来而使得每一帧信号都像是慢动作一样.因此,快照效应与分子运动引起的平均效应相关.如图4所示[19],在最低的频率15.625 GHz下,氮氧化物的EPR谱图的光谱较窄.随着微波频率的增加至250~2 000 GHz,EPR谱图显示出慢动作的特征,具体表现为谱线的分辨率更高,谱线的位置发生变化(如谱线峰的漂移或分裂等),这表明高频高场EPR不容易受到分子运动引起的平均效应的影响.

图4

图4   一个旋转相关时间为1.7 ns的氮氧化物中自旋标记分子在不同微波频率下的运动平均的EPR谱[19]

Fig. 4   Average EPR spectra of the motion of spin-labeled molecules at different microwave frequencies in a nitrogen oxide with rotational correlation time of 1.7 ns[19]


3 EPR谱仪由低频低场至高频高场的发展历程

3.1 EPR谱仪在国外的发展历程

1944年,苏联科学家Zavoisky在喀山大学研究CuCl2、MnCl2等顺磁性盐类时,使用4.76 mT的外磁场强度和133 MHz的频率成功检测到了CuCl22H2O样品的EPR谱,第一次观察到EPR现象[18,22-23].自此,与EPR技术相关的基础研究得以开展.Strandberg等设计的含有自动频率控制系统(AFC)的EPR谱仪于1956年完成.1982年,第一台脉冲式EPR谱仪在莱顿大学的实验室搭建完成.1987年,德国的Bruker公司推出首台商用X波段脉冲式EPR谱仪[18,22].

随着对灵敏度和分辨率等技术指标的需求越来越高,从20世纪60年代开始,研究人员尝试采用更高的磁场强度和更高的微波频率进行EPR实验.以荷兰莱顿的Jan Schmidt团队、俄国莫斯科的Yakob Lebedev团队,以及德国的T. F. Prisner团队为代表的研究人员[3,24-26]为高频高场EPR技术的开创性工作做出了重大贡献.1977年,Yakob Lebedev团队使用单模TE011圆柱形谐振器建造了第一个150 GHz的高灵敏度连续波EPR谱仪.1988年,Freed等搭建了第一个250 GHz的连续波EPR实验装置[27],与此同时,法国格勒诺布尔的Brunel和Martinez等[28]在20 T磁场下研制了可以使用光学泵浦远红外激光和调谐的160~525 GHz连续波EPR谱仪.1994年,德国的Prisner团队[29]搭建了具有高谱分辨率和时间分辨率的95 GHz高场外差脉冲EPR谱仪,然后于1999年成功研发了配备14 T磁场的360 GHz高频高场外差感应模式连续波EPR谱仪,并且使用该谱仪对室温下的标准样品1,1-二苯基-2-三硝基苯肼(DPPH)和双苯基乙烯-苄酯(化学式为C26H22),以及190 K下冰冻溶液中的4-羟基-2,2,6,6-四甲基哌啶-1-氧自由基(HO-TEMPO)进行了连续波EPR测量,展示了其较高的塞曼分辨率(在磁场中测量电子自旋共振时的微波频率的能力)[30]. 1996年,德国的Bruker公司推出了第一台具备两种模式(连续波和脉冲)的商用高频高场EPR谱仪[31]. 1998年,圣安德鲁斯大学的Smith等[32]搭建了一种准光学连续波EPR谱仪,其工作频率范围为80~200 GHz,工作温度范围为2.5~300 K.1999年,Brunel等[33]为研究高自旋系统和自由基物质搭建完成了一个单向传输模式下多频高场EPR装置.在20世纪90年代,还开展了4次关于高频高场EPR的研讨会[34]:第一次于1991年在美国国家强磁场实验室(NHMFL)举行,讨论了高频高场EPR计划的初始阶段;第二次于1994年7月在NHMFL举行,讨论了在实验室发展高频高场EPR仪器的机会和重点;第三次于1998年3月在伊利诺伊大学EPR研究中心(IERC)举行,讨论了当时高频高场EPR仪器的发展现状;第四次于1998年9月在华盛顿特区举行,讨论了高频高场EPR的广泛应用前景和发展方向.2003年,荷兰莱顿大学的Jan Schmidt团队成功研发了275 GHz的高频高场连续波和脉冲EPR谱仪,磁场强度为9.9 T[35].直到现阶段,各个国家的强磁场实验室中的高频高场EPR实验装置依旧在不断改进与更新,以便于向众多领域的研究人员提供一个更好的技术平台.国外EPR谱仪发展历程中的关键时间节点的总结归纳如图5所示.表1表2表2来自文献[4])分别列出了目前欧美国家强磁场实验室和日本强磁场实验室的EPR装置的概况,其中,欧洲的一些国家和美国主要是基于超导磁体的稳态强磁场搭建高频高场EPR装置,而日本主要是基于脉冲强磁场搭建高频高场EPR装置.

图5

图5   国外EPR谱仪发展历程中的关键时间轴

Fig. 5   The key timeline in the development of EPR spectrometer abroad


表1   欧美国家强磁场EPR装置分布

Table 1  Distribution of high magnetic field EPR devices in Europe and America

LaboratoryEPR spectrometerB/Tv/GHzT/K
The National High Magnetic Field Laboratory (NHMFL, US)Heterodyne quasi-optical spectrometer12.5120~3361.5~400
Transmission spectrometer15/1724~6603~309
W-band HiPER spectrometer9944~300
Broadband BWO spectrometer2570~1 200Depends on the cryostat used
Broadband MVNA spectrometer458~1 0000.5~400
XW-band Bruker pulsed spectrometer69~944~300
The Dresden High Magnetic Field Laboratory (HLD, Germany)Transmission-probe multi-frequency
spectrometer
700.1~9 0001.5~300
The Grenoble and Toulouses National High Magnetic Field Laboratory (LNCMI, France)Multifrequency EPR spectrometer
operating
1695~7702.1~300
The Nijmegen High Field Magnet Laboratory (HFML, Netherlands)Free-electron lasers multifrequency
EPR spectrometer
330.25~120 0004~300

新窗口打开| 下载CSV


表2   日本强磁场EPR装置分布[4]

Table 2  Distribution of high magnetic field EPR devices in Japan[4]

PlaceSourcev/GHzDetectorB/TT/K
SendaiVector network50~120Diode200.2~300
TsukubaFIR laser250~3 000InSb401.8~300
KashiwaFIR laser250~5 000InSb15010~300
YokohamaGunn etc.20~110InSb161.8~300
FIR laser600~7 000
Vector network30~660Diode
FukuiGunn95~120InSb401.8~300
Gyrotron<610InSb
Vector network82~800Diode12
OsakaGunn94InSb551.4~300
FIR laser326~3 100
KobeGunn+multi30~315InSb401.8~300
BWO180~1 200
FIR laser250~7 000
OkayamaGunn35~100InSb400.5~300
BWO300
FIR laser250~7 00030

注:FIR为有限脉冲响应;BWO为回波振荡器

新窗口打开| 下载CSV


3.2 EPR谱仪在国内的发展历程

1958年,我国第一台EPR谱仪由中国科学院长春应用化学研究所从苏联引进,自此,国内研究人员开始了对EPR技术领域的探索.1962年,在吴钦义先生的领导下,他的科研团队独立自主地研制出了我国第一台X波段EPR谱仪.同时,中国科学院生物物理研究所的万谦和卢景雰带领404课题组也成功研制了一台X波段EPR谱仪.1978年之后,随着改革开放的进程,国内的EPR谱仪也迈入了从国外谱仪公司(主要是德国Bruker公司和美国Varian公司)进口的时代.1987年,受改革开放的推动和影响,第一届“中日双边EPR学术研讨会”于11月在杭州举办.然而,在后续举办的每届全国波谱学学术会议上,与核磁共振(NMR)相比,EPR领域的参会人数以及EPR论文数量越来越少.二十一世纪初,中国科学技术大学杜江峰院士带领的科研团队研发出一系列脉冲EPR谱仪,并且达到了国际较为尖端的水平,从而改变了EPR在国内面临的窘境[1,36].2011年,位于武汉的国家脉冲强磁场科学中心依托脉冲强磁场建设完成国内第一套脉冲强磁场高频连续波EPR装置,为我国高频高场EPR技术的发展打开了局面.2015年,位于合肥的中国科学院强磁场科学中心以稳态强磁场为基础,搭建了第一套完整的稳态强磁场高频连续波EPR实验装置.近些年,国仪量子公司作为国内EPR谱仪研发公司的代表,推出了台式电子顺磁共振波谱仪EPR200M、X波段连续波电子顺磁共振波谱仪EPR200-Plus、X波段脉冲式电子顺磁共振波谱仪EPR100、以及W波段脉冲式电子顺磁共振波谱仪EPR-W900等优秀产品.

4 高频高场EPR谱仪的构造及研制

4.1 高频高场EPR谱仪的构造

以连续波EPR为例,高频高场EPR谱仪的总体结构如图6所示,主要由磁体系统(磁体及配套的电源、低温系统,电源和低温系统未在图中作出)、微波桥系统(高频高功率微波源和高频倍频模块链路组成发射电路,QMC仪器液氦冷却InSb辐射热计、低噪声前置放大器和锁相放大器组成接收电路)、测量杆(包括45˚反射镜、圆柱形波导管、平行双管反射底座)及实验测量控制程序(计算机:数据采集与处理)等部分组成.磁体系统用于产生强大的恒定磁场,通常是超导磁体或脉冲磁体.微波桥系统提供高频高功率的电磁波,用于激发电子自旋的共振吸收.发射电路通常由高频微波固态源构成,而接收电路通常采用QMC(Quantum Magnetics Company,量子磁性器件公司)微波探测系统来检测微弱信号.测量杆是将实验样品放置于磁场和微波场中的装置,其中45˚反射镜等关键部件的设计能够有效降低信号在传输过程中的损失.EPR实验测量控制程序一般基于LabVIEW软件来设计,以实现仪器的操作控制和数据的采集、处理与分析的功能.

图6

图6   高频高场连续波EPR谱仪的总体结构图

Fig. 6   General structure diagram of high frequency and high field continuous wave EPR spectrometer


Brunel等搭建的多频高场EPR谱仪[27,33]图7所示.此装置采用了牛津仪器公司的高度均匀的17 T Teslatron超导磁体,该磁体包含两套线圈:(1)用于设置塞曼场基本分量或产生大场扫描(高达17 T)的主线圈;(2)产生磁场扫描的扫频线圈,这是进行常规高分辨率连续波EPR实验所必需的.该装置还采用了一组涵盖24~550 GHz频谱范围的固态微波源.若采用光泵浦远红外激光微波源,则可以将频率上限扩展到3 THz.该EPR装置采用了MVNA(Microwave Vector Network Analyzer,微波矢量网络分析仪)覆盖8~18 GHz的微波频率范围、110 GHz(ESA1-110)和95 GHz(ESA1-95-5)GUNN二极管微波源,其中ESA1-110和ESA1-95-5微波源通过倍频模块获得更高的频率,从而使固态微波源覆盖24~550 GHz的微波频率范围.根据此多频高场EPR谱仪的应用和操作频率,他们在信号检测处理的前端采用了QFI/3BI液氦冷却的快速InSb热电子辐射计,它可以提供高灵敏度的信号检测.并且使用适当长度的黄铜管(内径10.0 mm,外径12.0 mm)来制造低温箱外的微波通道的所有部分.这些波导管主要用来连接微波源和探头,以及探头和探测器输入端口.此EPR谱仪使用单向传输方式,单向传输探头的微波通道包含了4个由光学抛光的黄铜制成的45˚偏转镜.

图7

图7   在单向传输模式下工作的多频高场EPR谱仪示意图[33]

Fig. 7   Schematic diagram of a multifrequency high field EPR spectrometer operating in the single-pass transmission mode[33]


近几年,美国南加州大学Cho等[5,37]搭建的高频高场EPR谱仪如图8所示,它包含1个高频、高功率(115和230 GHz时的峰值功率分别为700和100 mW)的固态发射器,1个准光学系统、1个超外差相位敏感检测系统,1个12. 1 T的无低温超导磁体,以及1个液氦低温箱,可在107~120 GHz和215~240 GHz频率范围内、0~12.1 T磁场范围内、1.4~300 K温度范围内运行.除了用于EPR实验之外,还可以用于电子-电子双共振(DEER)和动力学解耦(DD).

图8

图8   230/115 GHz高频高场连续波/脉冲EPR谱仪的结构图[37]

Fig. 8   Structure diagram of 230/115 GHz high frequency and high field continuous wave/pulse EPR spectrometer[37]


位于武汉的国家脉冲强磁场科学中心己完成建设我国第一套脉冲强磁场高频EPR装置,如图9所示,频率为210~370 GHz,样品温度为2~300 K,磁场强度为0~50 T[38].实验结果表明:脉冲磁场波形稳定可靠;液氦浴低温系统能够为样品提供稳定的最低达2 K的低温环境;该装置的主要设备返波振荡器和QMC(量子磁性器件公司)微波探测系统(其中包括ULN95预前放大器和QFI/X热电子InSb探测器)工作稳定.他们在频率为300 GHz实验中,成功观察到红宝石(ruby)样品中Cr3+的EPR谱.并且实验结果与相关文献一致,证明了所研制装置的有效性.

图9

图9   国家脉冲强磁场科学中心建设的国内第一套脉冲强磁场高频EPR装置

Fig. 9   The first set of pulsed high magnetic field and high frequency EPR device built by National Pulsed High Magnetic

Field Science Center in China


4.2 中国科学院强磁场科学中心的高频高场EPR谱仪研制

位于合肥的中国科学院合肥物质研究院强磁场科学中心的第一套完整的稳态强磁场EPR实验装置如图10所示.磁场范围为0~25 T,微波频率为82~690 GHz,变温范围为2~300 K.该装置可应用于以下研究:在分子磁体研究上,解决大零场分裂体系的微结构和哈密顿参数测量问题;在反铁磁以及复杂磁结构材料的磁性和磁结构研究上,能够得到磁/自旋激发信息,甚至在一些情况下可以弥补中子衍射手段的不足;在蛋白、DNA和聚合物分子运动动力学研究上,从整体到局部全面了解大分子运动的相关时间常数.利用该高频高场EPR谱仪,清晰地观测到了掺杂了0.05%Mn2+的MgO固体粉末在微波频率为448 GHz和428 GHz的EPR谱图,并获得了220 GHz微波频率下DPPH标准样品的高质量EPR谱图等.

图10

图10   中国科学院强磁场科学中心搭建的稳态强磁场EPR实验装置

Fig. 10   The steady state high magnetic field EPR test equipment set up by High Magnetic Field Laboratory, Chinese Academy of Sciences


上述装置是基于水冷磁体平台搭建成功的.然而,由于超导磁体的均匀度和稳定度更好,因此目前研究团队正基于15 T超导磁体平台搭建单向传输方式的400~420 GHz的连续波EPR谱仪.该谱仪采用了15 T超导磁体作为EPR实验环境,设计了400~420 GHz高频微波固态源、EPR测量杆、抗干扰装置、LabVIEW程序等关键系统,便于更好地研究高频高场下磁性材料的微观结构和相应的微观信息.

15 T超导磁体的总体方案设计如图11所示.超导磁体由A/B/C三个线圈组成:A线圈为Nb3Sn-CICC导体层绕绕制,B线圈为Nb3Sn股线密绕绕制,C线圈由NbTi股线密绕绕制.该超导磁体的磁场强度峰值为15 T,室温孔径≥100 mm,采用迫流冷却和液氦浸泡零蒸发方式进行冷却.而且,它的电源系统为5 kA和200 A双电源系统,低温系统由GM(Gifford-Mcmahon,吉福特—麦克马洪)制冷机和液氦自循环实现.

图11

图11   15 T超导磁体总体方案设计图

Fig. 11   Overall design of 15 T superconducting magnet


由于需要满足强磁场和高频率两个条件,故该EPR谱仪的发射电路需要高频微波固态源来实现.图12为400~420 GHz的高频微波固态源设计图(器件名称、频率、功率以及输入输出接口均标示在图中),用来实现基于15 T超导磁体的高频高场EPR谱仪的发射电路的功能.频率源发射出16.67~17.5 GHz的微波信号,经过有源六倍频、可调衰减器和功率放大器等高频倍频模块链路(其中的自动增益控制电路作为反馈回路,用来解调制和调整发射信号的稳定性),最后输出了微波频率为400~420 GHz(倍频次数为24)、输出功率为8 dBm即7 mW的微波信号.

图12

图12   400~420 GHz高频微波固态源电路图

Fig. 12   Circuit diagram of 400~420 GHz high frequency microwave solid-state source


在高频高场EPR实验中,通常情况下使用测量杆对样品在发生共振吸收时产生的电子自旋共振信号进行测量.测量杆是一个具有一定长度和直径的细长金属杆,一端连接着高频微波电路,另一端则放置在样品和反射镜附近.在满足连续流动式低温恒温器内部高度的条件下,测量杆的长度可以适当地缩短,从而减少高频微波电路中输出功率的损失.图13为高频高场EPR测量杆总体设计图.高频微波固态源最终输出的微波信号从左边长度较短的不锈钢波导上的垂直双管反射镜座的法兰盘水平输入,经过45˚反射镜,在不锈钢波导中传输至接杜瓦口法兰,从而进入连续流动式低温恒温器中以进行EPR实验的核心步骤.传入至低温杜瓦中不锈钢波导里的微波信号通过底部管卡与所测样品相互作用(样品所处位置的不锈钢波导外面在调制线圈骨架上包裹着调制线圈以使用调制场技术),随着外磁场强度的增加,直至达到共振条件(1)式时,样品才会吸收微波能量,产生EPR现象.从样品中反射出的微波信号输送至平行双管反射底座中,通过两个45˚反射镜的作用,传入右边较长的不锈钢波导中.最后,由接杜瓦口法兰将反射回的微波信号传输至45˚反射镜,然后从垂直双管反射镜座的法兰盘水平输出.

图13

图13   高频高场EPR测量杆总体设计图

Fig. 13   Overall design drawing of high frequency and high field EPR measuring rod


在稳态强磁场下进行高频高场连续波EPR实验时,400~420 GHz高频微波固态源产生的电磁波和15 T超导磁体产生的强磁场会对微波桥系统中接收电路的信号探测系统造成电磁干扰,从而降低EPR信号检测的灵敏度和精度.因此,我们采用了金属屏蔽柜,将信号探测系统等关键器件放进其中,然后对金属屏蔽柜进行适当移动以远离超导磁体.由于金属屏蔽柜可以有效地屏蔽外部磁场干扰以及减小外界电磁波的干扰,实验的稳定性、可靠性和精度得以提高.我们采用了有限元分析软件里的电磁波分析模块对金属屏蔽柜的屏蔽效果做了模拟仿真分析.图14为金属屏蔽柜的设计以及金属屏蔽柜的屏蔽效果仿真分析.

图14

图14   金属屏蔽柜的设计以及其屏蔽效果仿真分析

Fig. 14   Design of metal shield cabinet and simulation analysis of the shielding effect


由于高频高场EPR实验需要在稳态强磁场下进行,超导磁体产生的磁场会对人体产生一定的伤害,因此EPR实验测量装置往往采用远程控制程序.又因为EPR实验中的仪器设备较多,操作也比较复杂,基于上述原因,我们最终决定使用LabVIEW软件平台开发一套EPR实验测量程序,包括数据采集、处理及储存等.图15为EPR实验测量系统的用户操作界面即前面板,主要包括微波源系统控制、信号探测系统相关参数、EPR谱图的产生、snapshot的数据记录以及共振磁场强度的计算等模块.

图15

图15   EPR实验测量系统的用户操作界面

Fig. 15   User operation interface of the EPR experimental measurement system


5 高频高场EPR谱仪在相关领域的应用

5.1 高频高场EPR技术在生物医学中的应用

在生物大分子的结构和功能,以及生物过程的反应机理和动力学等研究方面,相比低频低场的EPR,高频高场EPR技术因具备更高的灵敏度和分辨率而更有优势,它在生物医学中主要有如下几方面的应用.

(1)生物膜的研究:生物膜是生物体中的重要组成部分,高频高场EPR技术可以用于研究生物膜中未成对电子的自旋信息,从而了解生物膜中的分子结构、动态和相互作用.生物膜具有的生物学特性也适用于高场高频EPR研究,如柔韧性和弹性使其在高频高场下保持完整性和稳定性;低自旋测量噪声可以提高高频高场EPR信号质量和分辨率;分子多样性可以适应各种样品和实验条件.

(2)药物研发:高频高场EPR技术可以用于药物研发中的质量控制和安全性评估.该技术可以检测药物分子和生物分子中的自由基、金属离子以及其他在药物或生物分子的生产、储存和使用的过程中残留的杂质(如溶剂残留物、氧化产物、细胞残留物等),从而了解药物的分子结构和药效.此外,该技术还可以用于药物毒性研究,了解药物在体内的代谢和副作用.

(3)生物医学成像:高频高场EPR技术可以应用于非侵入性的生物医学成像,用于研究组织和器官中的氧分布、血流和代谢活动等.该技术可以通过植入标记剂或荧光染料,对活体组织进行高分辨率成像.此外,它也可以用于检测肿瘤组织中的自由基、金属离子、以及具有多样性、可变性和可溶性的代谢产物(如葡萄糖、氨基酸等),对癌症的早期诊断和治疗具有重要的临床应用价值.

以下实例为高频高场EPR技术在生物医学中的应用.

5.1.1 高频高场EPR应用于磷酸钙中金属杂质的研究

磷酸钙(CaP)在自然界中含量丰富,并存在于生物体内.在生物医学中,CaP基材料被广泛认为是最适合骨组织工程的基质.通过利用具有生物重要性(如生物相容性、催化活性、离子传导性)的元素和基团对CaP结构进行阳离子和阴离子取代,可以改善CaP基物质特性.色素沉着是最近确定的镧系元素所修饰的CaP的特性之一,这使得CaP有望作为用于开发骨再生的生物活性材料,以及用于生物成像的智能荧光探针.

2019年,Gabbasov等[39]使用了W波段的Bruker Elexsys 680 EPR谱仪(微波频率为94 GHz),对生物源和合成源CaP中的金属杂质进行了研究.生物源CaP 样品包括稳定和不稳定的动脉粥样硬化斑块(AP),这两种样品是在动脉粥样硬化患者的颈动脉内膜切除术(颈动脉标本的内层)期间获得的;合成源CaP样品包括纯的羟磷灰石(HA)、β型磷酸三钙(β-TCP)和它们的替代粉末(掺有Mn2+),这些样品均是通过在含氮溶液中沉淀和氧化钙中异相合成而得到的(替代粉末的制备过程中,以硝酸锰溶液的形式引入Mn2+).图16显示了在不同温度下,掺有Mn2+的、平均晶粒尺寸为20 nm的纳米HA和TCP,以及稳定和不稳定的AP的W波段EPR谱.可以看出,高频高场EPR谱仪可以在低温下检测到掺有Mn2+的HA和TCP.而且,由图16(b)可以发现,随着温度的降低,电子弛豫时间变长,信噪比增加.因此,基于高频高场EPR技术对掺有Mn2+的CaP材料的研究,在获得具有抗菌特性的生物医学骨科和牙科材料方面有着广阔的应用前景.

图16

图16   (a)掺有Mn2+的合成HA,以及稳定和不稳定的AP在50 K下的94 GHz脉冲EPR谱;(b)掺有Mn2+的TCP在50 K和100 K下的94 GHz脉冲EPR谱[39]

Fig. 16   (a) 94 GHz pulse EPR spectra of the synthesized HA doped with Mn2+ and the stable and unstable AP at T=50 K; (b) 94 GHz pulse EPR spectra of TCP doped with Mn2+ at T=50 K and 100 K[39]


5.1.2 高频高场EPR应用于固体MAS-DNP的高效极化剂的研究

魔角旋转下的高场动态核极化(MAS-DNP)是一种功能强大、用途广泛的方法,具有如下优势:提高信号强度、信噪比和分辨率;扩大实验范围,比如可以应用于具有高分子量的复杂化合物或者具有非晶态结构的样品;提高实验效率,从而节省实验时间和资源.因此,它可以广泛应用于材料科学、生命科学等领域中.

2022年,Harrabi等[40]基于X波段和高频高场EPR技术,对一种新的DNP极化剂cAsymPol-POK及其异构体AsymPol-POK的特性进行了比较.并根据密度泛函理论(DFT)和分子动力学(MD)计算推测两者的几何形状,以便与EPR谱图进行匹配.如图17所示,由AsymPol-POK和cAsymPol-POK的两个构象异构体拟合的多频EPR谱,与实验EPR谱图一致性较高.此外,从图17两个样品的EPR实验谱(0.335~0.35 T之间由X波段EPR谱仪测量,8.525~8.575 T之间由240 GHz EPR谱仪测量)显示,与AsymPol-POK相比,cAsymPol-POK的最高信号强度更高,对应的吸收峰也较为尖锐,谱线宽度较窄,因此,cAsymPol-POK有着更好的超极化效率.该研究表明通过将高频高场EPR技术与DFT和MD计算结合在一起,可以对固体MAS-DNP的高效极化剂进行有效研究.

图17

图17   AsymPol-POK和cAsymPol-POK在低场X波段的EPR谱图和高场240 GHz的EPR谱图的结合,AsymPol-POK为黑色实线,cAsymPol-POK为蓝色实线,相应的模拟EPR谱为红色虚线[40]

Fig. 17   The combination of low-field X band EPR spectra and high-field 240 GHz EPR spectra of AsymPol-POK and cAsymPol-POK. AsymPol-POK is represented by black solid line, cAsymPol-POK is represented by blue solid line, and corresponding simulated EPR spectra are represented by red dotted line[40]


5.1.3 高频高场EPR在金属蛋白及自由基酶中的应用

金属蛋白是嵌入金属离子或金属簇的蛋白质,当蛋白质中存在许多顺磁性物质时,会导致其EPR谱重叠[41].采用高频高场EPR技术可以使得所重叠的谱线区分开来,从而提高g值分辨率.

2002年,Ubbink等[42]在Mn蛋白的高频高场EPR谱中,发现了6条Mn成分的线(塞曼效应).其中,该EPR谱图里Mn成分谱线中的窄线增加了EPR测量的灵敏度.

在细菌的氧化还原链中,蓝色蛋白质具有活性,并且含有Cu离子,用于电子传递;而Cu蛋白也包含Cu离子,在一些生物化学反应中用作催化剂.这两种蛋白EPR谱中的g值均可以通过使用单晶EPR来计算得到.2003年,Fittipaldi等[43]在95 GHz的脉冲ENDOR实验中,观察并测量了一氧化二氮还原酶的铜A中心的微观信息.其中,一氧化二氮还原酶是一种含有Cu离子的酶,而由两个Cu离子组成的双核铜中心(铜A中心)是其重要结构之一.

由于零场分裂,EPR谱的低频X波段部分对于研究Fe中心来说是很复杂的.然而,随着微波频率的不断提高,在高频高场EPR的技术下,可以获得关于分别含有Fe3+的NO结合复合物、肌红蛋白和血红蛋白的具体微观结构信息,EPR谱图也变得更加容易分析.2006年,Barra等[44]在W波段的EPR实验中,根据g-各向异性推断出红素氧还蛋白突变体Rm A44S样品中的Fe中心不是顺磁性的来源,而是氨基酸中的自由基中心.

顺磁中心也会存在于被称为自由基酶的氨基酸的修饰状态中.对于处于自由基状态的蛋白质,采用高频高场EPR技术可以更好地研究动力学[45,46].单占据分子轨道(SOMO)是g值偏移的普遍特征,同时这些g值的偏移随着激发态和基态之间扰动能量的增加而减少.因此,更高的微波频率和磁场强度能够增加能级差ΔE,从而提高测量自由基酶的准确性[47].

5.2 高频高场EPR技术在量子领域中的应用

在量子领域中,高频高场EPR技术可以用于研究和探索分子的电子结构、电子态、电子交互作用等方面,从而帮助研究人员更好地理解未成对电子的行为和性质.这些研究结果可以帮助推进量子领域中以下方面的研究和应用:

①量子计算.量子计算中需要用到具有特殊性质的量子比特,如自旋量子比特.高频高场EPR技术可以用于研究自旋量子比特和它们的相互作用,从而推动量子计算的发展和创新.

②量子材料.高频高场EPR技术可以用于研究新型量子材料中的电子自旋和相互作用,从而发现新的材料性质和应用.

③量子通信.高频高场EPR技术可以用于保护量子信息和通信.通过利用EPR技术的量子纠缠性质,可以实现量子密钥分发和保密通信.

④量子传感.高频高场EPR技术可以用于测量物理量,如磁场、温度及压力等.通过探测和分析包含未配对电子的分子的特殊电子自旋行为,从而实现对特定物理量的大小、方向等参数的测量.

5.2.1 高频高场EPR应用于纳米金刚石中表面自旋与自旋弛豫之间关系的研究

纳米金刚石(NDs)中带负电荷的氮空穴(NV)中心具有独特的磁和光学特性,以及在室温下相干时间长等优势,在基础科学和量子传感应用中有着广阔的应用前景.基于NV的传感有助于检测纳米体积内的电场、温度、应变和pH值.而且,在NV检测的磁传感中,需要通过测量NV的自旋弛豫时间(如T1T2)来检测磁场.因此,为了获得较高的检测灵敏度,需要较长的T1T2.

基于高频高场EPR技术,2020年,Peng等[48]对NDs中单代氮杂质(P1)中心的表面自旋与T1T2之间的关系进行了研究.他们以微米级的金刚石粉末和四种不同尺寸的NDs作为样品,并采用了空气退火处理方法.图18所示为室温条件下测量的空气退火前后50 nm ND样品的230 GHz连续波EPR谱.从图中可以看出,所有的谱线在8.206 T处包含一个明显的、宽EPR信号,在8.207 T处包含一个窄EPR信号.根据分析,确定8.207 T的EPR信号来自P1中心,而8.206 T的信号来自表面自旋.退火后,表面自旋的EPR信号强度明显下降.通过高频高场EPR分析并描述表面自旋的数量,进而成功地提取了表面自旋对T1的贡献,以此体现表面自旋的数量和T1之间有明显的相关性.此外,通过去除表面自旋,T1T2也得到了相应的改善.该研究为抑制NDs中表面自旋引起的自旋弛豫过程奠定了基础,同时对基于NV的传感应用至关重要.

图18

图18   空气退火前后50 nm NDs样品的230 GHz连续波EPR谱;右上方的插图为P1和表面自旋(S)对EPR谱的贡献;左边为处于退火过程中的NDS的示意图.绿色实线代表EPR实验谱,红色箭头代表P1中心,蓝色箭头代表表面自旋[48]

Fig. 18   230 GHz continuous wave EPR spectra of 50 nm ND samples before and after air annealing. The upper right illustration shows P1 and surface spin (S) contribution to the EPR spectrum; On the left is a drawing representing NDS during annealing. The green solid line represents the EPR experimental spectrum, the red arrow represents the center of P1, and the blue arrow represents the surface spin[48]


5.2.2 高频高场EPR应用于V离子的相位记忆弛豫的方向依赖性的研究

分子量子比特是下一代量子信息处理和传感方案的潜在核心.量子比特被定位在精确的阵列中,以鼓励纠缠和单独操作,从而有效地产生小型测试规模的基于自旋的量子计算设备.为了实现这一目标,了解表面沉积后的磁性分子量子比特特性至关重要.而分子在表面上的取向对其磁性性能以及基于表面的分子尺度量子计算机的设计有重要影响.因此,了解磁弛豫对分子方向的依赖性是设计磁性分子的一个基本参数.

目前,含有金属离子的分子量子比特受到广泛的重视.2020年,Jackson等[49]通过高频高场EPR技术对含有V离子的复合物进行了相位记忆弛豫的方向依赖性的研究.他们以含有V离子的复合物 (n-Bu3NH)2[V(C6H4O2)3]为样品,在NHMFL自制的120/240/336 GHz脉冲EPR谱仪上进行高频高场EPR实验.如图19所示,与X波段尖锐的八线谱相比,高频高场下的谱线非常宽,可能归因于g-应变.虽然这些谱线很宽,但仍然包含重要且可解析的特征:尖锐、低场的特征来自于${{g}_{z}}$与${{B}_{0}}$对齐的分子,而更强烈、高场的特征来自于${{g}_{x,y}}$与${{B}_{0}}$平行的分子.相反,在X波段频率(${{B}_{0}}$为0.34 T)上,这3个方向的信号完全重叠.该实验是第一个使用高频高场脉冲EPR技术对V离子中相位记忆弛豫时间的方向依赖性进行研究.

图19

图19   样品(n-Bu3NH)2[V(C6H4O2)3]分别在4 K和4.5 K时,用120和240 GHz微波信号检测的EPR谱图,绿色实线和紫色实线为EPR实验谱图,黑色实线为EPR模拟谱图[49]

Fig. 19   EPR spectra of sample (n-Bu3NH)2[V(C6H4O2)3] detected by 120 and 240 GHz microwave signals at 4 K and 4.5 K, respectively. The green and purple solid lines are EPR experimental spectra, and the black solid lines are EPR simulation spectra[49]


5.2.3 高频高场EPR对石榴石陶瓷的杂质组成和电子结构的研究

带有放射性稀土元素杂质的石榴石晶体和基于这些晶体的陶瓷是众多基础研究和应用研究中的独特系统.由于放射性稀土元素和石榴石晶体的存在,该独特系统具有的放射性、光谱特性(如荧光和激光)、高硬度、高抗磨损性、高抗腐蚀性和高化学稳定性等特点,使其可以应用于核技术、激光技术、医学和环境监测等领域.石榴石晶体和含有铈杂质的陶瓷被广泛用于将基于氮化物的蓝色光电二极管和激光器的光转换为白光,是闪烁探测器的重要材料.现阶段,带有辐射性稀土离子杂质的石榴石也可以应用于量子计算和通信.这是由于带有稀土离子杂质的晶体是理想的发射体,同时也是自旋系统,它是实现单光子(光立方)和单自旋(自旋立方)之间相互作用的模型,可以为量子计算和通信过程中的量子操作提供基础.

2019年,Edinach等[50]采用了钇铝石榴石Y3Al5O12(YAG)陶瓷合成物样品,在94 GHz的连续波EPR谱仪上进行了高频高场EPR实验,以分离出不同各向异性g因子的EPR谱,从而对石榴石陶瓷的杂质组成和电子结构进行研究.如图20(a)所示,在1.5 K温度下YAG:Ce,Yb陶瓷的94 GHz连续波模式下的EPR谱中,Ce3+和Yb3+的EPR信号清晰可辨.图20(a)中略微扭曲的椭圆体展示了粉末材料各向异性g因子在${{g}_{z}}<{{g}_{x}},{{g}_{y}}$时Yb3+的EPR信号平均化原理.图20(b)显示了YAG:Ce,Cr陶瓷在1.5和5 K温度下以94 GHz的频率记录的EPR谱.这证明了高频高场EPR有望用于鉴定石榴石陶瓷的杂质成分.

图20

图20   (a)在1.5 K下,YAG:Ce,Yb陶瓷的94 GHz连续波EPR谱,虚线为粉末材料中Yb3+和Ce3+的EPR模拟谱,插图为不同方向的YAG:Ce,Gd单晶中Gd3+的EPR谱;(b)在1.5 K和5 K下,YAG:Ce,Cr陶瓷中的94GHz连续波EPR谱,虚线为粉末材料中Ce3+、Cr3+和Gd3+的EPR模拟谱[50]

Fig. 20   (a) 94 GHz continuous wave EPR spectra in YAG:Ce,Yb ceramics at 1.5 K. The dashed lines are the EPR simulation spectra of Yb3+ and Ce3+ in powder materials. The illustrations are the EPR spectra of Gd3+ in YAG:Ce,Gd single crystals in different directions; (b) 94 GHz continuous wave EPR spectra in YAG:Ce,Cr ceramics at 1.5 K and 5 K, and dashed lines are EPR simulation spectra of Ce3+, Cr3+ and Gd3+ in powder materials[50]


5.3 高频高场EPR技术在其他领域中的应用

5.3.1 高频高场EPR应用于磁性材料及其磁体特性的研究

在各种范德瓦尔斯(vdW)磁体中,CrX3(其中X=Cl、Br、I)是一个化合物家族,由于其可裂解性和持续存在的磁性(甚至在原子极限时也是如此)而获得了相当多的关注.因此,扩大对vdW层状磁体中磁关联的认识和理解,对于实现其潜在的下一代磁电子应用非常重要.2021年,Saiz等[51]使用NHMFL的高频高场240 GHz的EPR谱仪在板状准二维(2D)CrBr3上进行EPR实验,分别以温度(4~200 K)和旋转角度作相关函数变化曲线图来深入了解二维磁性材料中的磁相互作用.通过对高频高场EPR谱的分析,发现Ginzburg-Landau临界模型充分地描述了EPR线宽的温度依赖性,从而表明了二维关联的存在.此外,共振场遵循$(3{{\cos }^{2}}\theta -1)$类似的角度依赖,而线宽遵循${{(3{{\cos }^{2}}\theta -1)}^{2}}$类似的角度依赖.该研究表明了在低维磁体中拓宽磁相关性知识方面,使用高灵敏度和高分辨率的EPR谱的重要性.

为了开发经济有效的磁性材料,测量和调整$S>1/2$的第一排过渡金属配合物的磁各向异性的能力较为关键.具有较大的磁各向异性的配位复合物(如单分子磁体等)在磁性材料领域有着不错的应用前景.由于单分子磁体的独特性质和微小尺寸,因此它在数据存储、量子计算和自旋电子学技术方面有着潜在的应用.2020年,Kumar等[52]采用5种不同的Co(II)复合物样品,在高频高场下50~640 GHz的EPR谱仪上进行实验,以研究配体氧化态和结构畸变对五配位Co(II)复合物的自旋态和零场分裂参数的影响.结果表明,高频高场EPR技术为其中3种复合物提供了精确的自旋哈米尔顿参数.同时,使用CASSCF/NEVPT2方法进行的多参考自旋计算表明,这些Co(II)复合物的强负各向异性主要来自于TpPh2配体所造成的赤道面的扭曲.

近年,机械响应的金属有机框架(MOFs)因其独特的性能和潜在的新应用领域成为了材料科学的焦点.MOFs的大部分特性来自于由金属节点和有机连接物组成的有序和多孔的晶体框架,并且可以对其进行调整和设计以适应特定的应用.同时,MOFs还具有结构灵活性和机械响应性.在高频高场EPR技术和扩展的Fisher模型的支持下,2020年,Muratovic等[53]研究了脱水和机械非晶化对Ni-MOF-74磁性能产生的影响,发现蜂窝状通道中的客体对Ni-MOF-74的磁性影响很小,而机械非晶化后磁性能会发生明显变化.

5.3.2 高频高场EPR用于黑色素的研究

在自然界发现的所有颜料中,黑色素在生物电子学应用方面引起了相当大的关注,因为它包含了一系列的物理化学特性,如抗氧化活性、金属螯合作用、生物相容性、整个紫外可见区的宽带吸收率、水化依赖的导电性以及内在和外在的自由基特性.

为更好地了解并研究这些黑色素的特性,2021年,Paulin等[54]采用了263 GHz 的连续波EPR谱仪对标准非功能化和磺化的衍生物进行了黑色素自由基来源的相关研究.该实验采用了NFMel、NFMel-P(非功能化的黑色素)和SMel(磺化功能的黑色素衍生物)样品,并且使用了Bruker Elexsys 780 EPR准光学光谱仪进行263 GHz连续波EPR测量实验,后续采用了EasySpin[55]对所测量的EPR谱进行分析.结果表明黑色素应该被看作是一个具有一个以上自由基物种的系统.此外,它还证明了磺化黑色素顺磁系统对非功能化类似物的兼容性.

5.3.3 高频高场EPR用于石油胶体分散体系的研究

从胶体化学的角度来看,石油可以被视为一种复杂的多成分混合物,根据外部条件的不同,它可以表现出分子溶液或胶体分散体系的特性.石油胶体分散体系(PDS)包含树脂、沥青质和其他固体颗粒[53].对这种组织复杂的多成分系统的特性和复杂行为的研究,仍然是基础科学和石油技术的重点.由于PDS中每1 g物质可含有多达1 020个顺磁性中心(Pcs),而Pcs是由d金属(如V、Ni、Fe、Mn)和有机自由基产生的,故适合采用高频高场EPR技术对PDS中的钒基卟啉(VP)复合物和自由基进行相关研究.

2020年,Gafurov等[56]采用了来自俄罗斯的阿沙尔琴科油田和萨利姆油田,以及古巴和中国的4种石油样品,同时还从两个炼油厂的工业沥青(样品N1和N2)及来自Akanskoe油田的重油(样品N3和N4)中提取了12种不同的沥青质粉末.高频高场EPR测量使用KFU物理研究所(喀山,俄罗斯)现有的ESP 300和Bruker公司的Elexsys 680在W波段EPR谱仪进行.研究发现,在沥青以及大量的轻油和重油样品中,在室温和强磁场(B = 3.4 T)下可能观察到顺磁性中心的电子自旋回波信号.该结果表明脉冲EPR技术可以用来研究PDS的高分子成分,确定电子-核相互作用的类型和数值,以及监测复杂碳氢化合物系统的时间参数变化等,而且不需要使用低温技术.

6 结论与展望

本文综述了高频高场下EPR谱仪的国内外发展历程、研究现状及在相关领域的应用等.近些年来,由于强磁场极端条件实现的困难以及稳定高频高功率微波源和波导系统研制的困难,高频高场下EPR谱仪的研究并不多见.国内有着强磁场条件的中国科学院合肥物质研究院强磁场科学中心和武汉国家脉冲强磁场科学中心分别成功搭建了一套高频高场下的连续波EPR实验装置,而且目前中国科学院合肥物质研究院强磁场科学中心正在基于15 T超导磁体平台搭建第二套高频高场下的连续波EPR实验装置,这将为化学、物理和生物等领域的广大研究人员提供了一个强大的、开放的、公共的实验平台.高频高场EPR谱仪随着不断的发展,其灵敏度、分辨率等优势会越来越明显,在相关材料的微观结构上会有着进一步的发现,对于化学、生物、物理等领域的发展有着重大意义.

利益冲突

致谢

感谢安徽省重点研究与开发计划专项(2022a05020036),合肥综合性国家科学中心强光磁关键技术预研项目(QGCYY03)以及强磁场安徽省实验室的支持.

参考文献

苏吉虎, 杜江峰. 电子顺磁共振波谱—原理与应用[M]. 北京: 科学出版社, 2022.

[本文引用: 5]

SALIKHOV K M.

Electron paramagnetic resonance applications: promising developments at the E K Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences

[J]. Physics-Uspekhi, 2016, 59(6): 588-594.

DOI:10.3367/UFNe.2016.02.037760      URL     [本文引用: 1]

OLEG Y G, LAWRENCE J B. Very high frequency (VHF) ESR/EPR[M]. New York: Kluwer Academic/Plenum Publishers, 2004.

[本文引用: 2]

程佳珺. 脉冲强磁场高频ESR系统的研制及其在磁性材料研究中的应用[D]. 武汉: 华中科技大学, 2015.

[本文引用: 4]

CHO F H. Developmnt of high-frequency electron paramagnetic resonance (EPR) spectrometer and investigation of paramagnetic defects and impurities in diamonds by multi-frequency EPR spectroscopy[D]. University of Southern California, 2015.

[本文引用: 6]

TELSER J, KRZYSTEK J, OZAROWSKI A.

High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry

[J]. J Biol Inorg Chem, 2014, 19(3): 297-318.

DOI:10.1007/s00775-013-1084-3      PMID:24477944      [本文引用: 4]

This minireview describes high-frequency and high-field electron paramagnetic resonance (HFEPR) spectroscopy in the context of its application to bioinorganic chemistry, specifically to metalloproteins and model compounds. HFEPR is defined as frequencies above ~100 GHz (i.e., above W-band) and a resonant field reaching 25 T and above. The ability of HFEPR to provide high-resolution determination of g values of S = 1/2 is shown; however, the main aim of the minireview is to demonstrate how HFEPR can extract spin Hamiltonian parameters [zero-field splitting (zfs) and g values] for species with S > 1/2 with an accuracy and precision unrivalled by other physical methods. Background theory on the nature of zfs in S = 1, 3/2, 2, and 5/2 systems is presented, along with selected examples of HFEPR spectroscopy of each that are relevant to bioinorganic chemistry. The minireview also provides some suggestions of specific systems in bioinorganic chemistry where HFEPR could be rewardingly applied, in the hope of inspiring workers in this area.

KRZYSTEK J, OZAROWSKI A, TELSER J, et al.

High-frequency and -field electron paramagnetic resonance of vanadium(IV, III, and II) complexes

[J]. Coordin Chem Rev, 2015, 301: 123-133.

[本文引用: 1]

SMITH G M, LESURF J C G, MITCHELL R H, et al.

ESR at millimetre and sub-millimetre wave frequencies

[C]// IEE Colloquium on Terahertz Technology and its Applications, London, UK: IET, 1997, 5: 1-6.

[本文引用: 1]

SAVITSKY A, MOBIUS K.

High-field EPR

[J]. Photosynth Res, 2009, 102(2-3): 311-333.

DOI:10.1007/s11120-009-9432-4      URL     [本文引用: 1]

SONG L K, LIU Z L, KAUR P, et al.

Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields

[J]. J Magn Reson, 2016, 265: 188-196.

DOI:10.1016/j.jmr.2016.02.007      PMID:26923151      [本文引用: 1]

High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.Copyright © 2016 Elsevier Inc. All rights reserved.

SMITH G M, LESURF J C G, MITCHELL R H, et al.

Quasi-optical cw mm-wave electron spin resonance spectrometer

[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937.

DOI:10.1063/1.1149200      URL     [本文引用: 1]

We describe a novel cw millimeter-wave electron spin resonance (ESR) spectrometer designed to operate in the frequency range of 80–200 GHz and in the temperature range of 2.5–300 K, which may be easily scaled to higher frequencies. The spectrometer uses a bimodal reflection cavity coupled to a circular corrugated guide and uses Gaussian quasi-optics for most of the front-end signal processing. This technique has very low insertion loss and allows a number of sophisticated measurement techniques to be employed including induction operation, which significantly reduces the effect of microphonics and stray reflections. A number of examples are given illustrating the sensitivity of the instrument and the advantages of using ESR at high fields.

SMITH G M, ROBERTSON D A, BOLTON D R, et al.

Instrumentation for high sensitivity, high power, millimetre wave, electron paramagnetic resonance

[C]// IET Colloquium on Millimetre-Wave and Terahertz Engineering & Technology, London, UK: IET, 2016: 1-5.

[本文引用: 1]

BLANK A, TWIG Y, ISHAY Y.

Recent trends in high spin sensitivity magnetic resonance

[J]. J Magn Reson, 2017, 280: 20-29.

DOI:S1090-7807(17)30058-7      PMID:28545918      [本文引用: 1]

Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional "old-fashioned" induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.Copyright © 2017 Elsevier Inc. All rights reserved.

MORTON J J L, BERTET P.

Storing quantum information in spins and high-sensitivity ESR

[J]. J Magn Reson, 2018, 287: 128-139.

DOI:S1090-7807(17)30289-6      PMID:29413326      [本文引用: 1]

Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins.Copyright © 2017. Published by Elsevier Inc.

YAMAUCHI S, TAKAHASHI K, ISLAM S S M, et al.

Time-resolved high-frequency EPR studies on magnesium and zinc tetraphenylporphines in their lowest excited triplet states

[J]. J Phys Chem B, 2010, 114(45): 14559-14563.

DOI:10.1021/jp1023197      URL     [本文引用: 1]

HOFBAUER W, EARLE K A, DUNNAM C R, et al.

High-power 95 GHz pulsed electron spin resonance spectrometer

[J]. Rev Sci Instrum, 2004, 75(5): 1194-1208.

DOI:10.1063/1.1710700      URL     [本文引用: 2]

High-field/high-frequency electron spin resonance (ESR) offers improved sensitivity and resolution compared to ESR at conventional fields and frequencies. However, most high-field/high-frequency ESR spectrometers suffer from limited mm-wave power, thereby requiring long mm-wave pulses. This precludes their use when relaxation times are short, e.g., in fluid samples. Low mm-wave power is also a major factor limiting the achievable spectral coverage and thereby the multiplex advantage of Fourier transform ESR (FTESR) experiments. High-power pulses are needed to perform two-dimensional (2D) FTESR experiments, which can unravel the dynamics of a spin system in great detail, making it an excellent tool for studying spin and molecular dynamics. We report on the design and implementation of a high-power, high-bandwidth, pulsed ESR spectrometer operating at 95 GHz. One of the principal design goals was the ability to investigate dynamic processes in aqueous samples at physiological temperatures with the intent to study biological systems. In initial experiments on aqueous samples at room temperature, we achieved 200 MHz spectral coverage at a sensitivity of 1.1×1010s spins and a dead time of less than 50 ns. 2D-electron-electron double resonance experiments on aqueous samples are discussed to demonstrate the practical application of such a spectrometer.

CRUICKSHANK P A, BOLTON D R, ROBERTSON D A, et al.

A kilowatt pulsed 94 GHz electron paramagnetic resonance spectrometer with high concentration sensitivity, high instantaneous bandwidth, and low dead time

[J]. Rev Sci Instrum, 2009, 80(10): 103102.

DOI:10.1063/1.3239402      URL     [本文引用: 1]

We describe a quasioptical 94 GHz kW pulsed electron paramagnetic resonance spectrometer featuring π/2 pulses as short as 5 ns and an instantaneous bandwidth of 1 GHz in nonresonant sample holders operating in induction mode and at low temperatures. Low power pulses can be as short as 200 ps and kilowatt pulses as short as 1.5 ns with timing resolution of a few hundred picoseconds. Phase and frequency can be changed on nanosecond time scales and complex high power pulse sequences can be run at repetition rates up to 80 kHz with low dead time. We demonstrate that the combination of high power pulses at high frequencies and nonresonant cavities can offer excellent concentration sensitivity for orientation selective pulsed electron double resonance (double electron-electron resonance), where we demonstrate measurements at 1 μM concentration levels.

任明伟. 宽带电子顺磁共振谱仪的设计与实现[D]. 合肥: 中国科学技术大学, 2018.

[本文引用: 3]

EARLE K A, DZIKOVSKI B, HOFBAUER W, et al.

High-frequency ESR at ACERT

[J]. Magn Reson Chem, 2005, 43: S256-S266.

DOI:10.1002/(ISSN)1097-458X      URL     [本文引用: 4]

BORBAT P P, COSTA-FILHO A J, EARLE K A, et al.

Electron spin resonance in studies of membranes and proteins

[J]. Science, 2001, 291(5502): 266-269.

DOI:10.1126/science.291.5502.266      PMID:11253218      [本文引用: 1]

We provide a review of current electron spin resonance (ESR) techniques for studying basic molecular mechanisms in membranes and proteins by using nitroxide spin labels. In particular, nitroxide spin label studies with high-field/high-frequency ESR and two-dimensional Fourier transform ESR enable one to accurately determine distances in biomolecules, unravel the details of the complex dynamics in proteins, characterize the dynamic structure of membrane domains, and discriminate between bulk lipids and boundary lipids that coat transmembrane peptides or proteins; these studies can also provide time resolution to studies of functional dynamics of proteins. We illustrate these capabilities with recent examples.

FREED J H.

New technologies in electron spin resonance

[J]. Ann Rev Phys Chem, 2000, 51: 655-689.

DOI:10.1146/physchem.2000.51.issue-1      URL     [本文引用: 1]

王皓. 电子顺磁共振谱仪中基于相频关系的自动频率控制系统的设计[D]. 合肥: 中国科学技术大学, 2017.

[本文引用: 2]

JESCHKE G.

Quo vadis EPR?

[J]. J Magn Reson, 2019, 306: 36-41.

DOI:S1090-7807(19)30133-8      PMID:31345773      [本文引用: 1]

Complexity of paramagnetic catalysts and materials increases, and the same applies to systems targeted by integrative structural biology. Hence, EPR spectroscopists must find ways to enhance information content of their data. I argue that a third major wave of method development in EPR spectroscopy, which is triggered by recent advances in digital electronics and computing, can achieve this. Transfer of NMR methods to EPR will go on, but part of the new EPR methodology will depend on completely new concepts.Copyright © 2019 Elsevier Inc. All rights reserved.

PRISNER T F.

Pulsed high-frequency/high-field EPR

[J]. Advances in Magnetic and Optical Resonance, 1997, 20: 245-299.

[本文引用: 1]

SUSHIL K. MISRA. Multifrequency Electron Paramagnetic Resonance[M]. Germany: Deutsche Nationalbibliothek, 2011.

[本文引用: 1]

TELSER J, KRZYSTEK J, OZAROWSKI A.

High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry

[J]. J Biol Inorg Chem, 2014, 19(3): 297-318.

DOI:10.1007/s00775-013-1084-3      PMID:24477944      [本文引用: 1]

This minireview describes high-frequency and high-field electron paramagnetic resonance (HFEPR) spectroscopy in the context of its application to bioinorganic chemistry, specifically to metalloproteins and model compounds. HFEPR is defined as frequencies above ~100 GHz (i.e., above W-band) and a resonant field reaching 25 T and above. The ability of HFEPR to provide high-resolution determination of g values of S = 1/2 is shown; however, the main aim of the minireview is to demonstrate how HFEPR can extract spin Hamiltonian parameters [zero-field splitting (zfs) and g values] for species with S > 1/2 with an accuracy and precision unrivalled by other physical methods. Background theory on the nature of zfs in S = 1, 3/2, 2, and 5/2 systems is presented, along with selected examples of HFEPR spectroscopy of each that are relevant to bioinorganic chemistry. The minireview also provides some suggestions of specific systems in bioinorganic chemistry where HFEPR could be rewardingly applied, in the hope of inspiring workers in this area.

REIJERSE E J.

High-frequency EPR instrumentation

[J]. Appl Magn Reson, 2010, 37(1-4): 795-818.

DOI:10.1007/s00723-009-0070-y      URL     [本文引用: 2]

MULLER F, HOPKINS M A, CORON N, et al.

A high magnetic field EPR spectrometer

[J]. Rev Sci Instrum, 1989, 60(12): 3681-3684.

DOI:10.1063/1.1140474      URL     [本文引用: 1]

We describe a tunable electron paramagnetic resonance (EPR) spectrometer designed to operate at frequencies between 160 and 525 GHz and magnetic fields of up to 20 T. To operate in such a broad frequency range we use a very stable optically pumped far infrared laser. The performance of the spectrometer has been measured with solid and liquid samples. This allows us to outline the potential uses of the spectrometer.

PRISNER T F, ROHRER M, MOBIUS K.

Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution

[J]. Appl Magn Reson, 1994, 7(2-3): 167-183.

DOI:10.1007/BF03162610      URL     [本文引用: 1]

FUCHS M R, PRISNER T F, MOBIUS K.

A high-field/high-frequency heterodyne induction-mode electron paramagnetic resonance spectrometer operating at 360 GHz

[J]. Rev Sci Instrum, 1999, 70(9): 3681-3683.

DOI:10.1063/1.1149977      URL     [本文引用: 1]

We present design details of and first measurements with a novel continuous wave (cw) high-field/high-frequency electron paramagnetic resonance spectrometer operating at a microwave frequency of 360 GHz and a magnetic field of up to 14 T. The spectrometer design incorporates a heterodyne mixer detection scheme with a quasi-optical transmission line and a bimodal induction mode Fabry–Perot cavity. First cw experiments on polycrystalline 1,1-diphenyl-2-picryl-hydrazyl and bisdiphenylene-β-phenylallyl benzolate in polystyrene at room temperature and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl in frozen solution at 190 K demonstrate the high Zeeman resolution achievable and allow an estimate of the present detection sensitivity of 4×109 spins/G at a detection bandwidth of 1 Hz.

SCHMALBEIN D, MARESCH G G, KAMLOWSKI A, et al.

The Bruker high-frequency-EPR system

[J]. Appl Magn Reson, 1999, 16(2): 185-205.

DOI:10.1007/BF03161933      URL     [本文引用: 1]

SMITH G M, LESURF J C G, MITCHELL R H, et al.

Quasi-optical cw mm-wave electron spin resonance spectrometer

[J]. Rev Sci Instrum, 1998, 69(11): 3924-3937.

DOI:10.1063/1.1149200      URL     [本文引用: 1]

We describe a novel cw millimeter-wave electron spin resonance (ESR) spectrometer designed to operate in the frequency range of 80–200 GHz and in the temperature range of 2.5–300 K, which may be easily scaled to higher frequencies. The spectrometer uses a bimodal reflection cavity coupled to a circular corrugated guide and uses Gaussian quasi-optics for most of the front-end signal processing. This technique has very low insertion loss and allows a number of sophisticated measurement techniques to be employed including induction operation, which significantly reduces the effect of microphonics and stray reflections. A number of examples are given illustrating the sensitivity of the instrument and the advantages of using ESR at high fields.

HASSAN A K, PARDI L A, KRZYSTEK J, et al.

Ultrawide band multifrequency high-field EMR technique: A methodology for increasing spectroscopic information

[J]. J Magn Reson, 2000, 142(2): 300-312.

PMID:10648147      [本文引用: 4]

We report methodology that combines an ultrawide band multifrequency microwave system with technology of high magnetic fields for solving challenging problems in electron magnetic resonance (EMR) spectroscopy. This strategy has been made possible due to a novel EMR facility operating in an exceptionally wide range of microwave frequencies of 24 GHz to 3 THz, at magnetic fields up to 17 T, and in the temperature range of 1.6 to 330 K. The basic configuration of the multifrequency system works in a transmission mode and employs oversized cylindrical waveguides for routing the microwave power. A wide-band, low-noise, liquid helium cooled (4.2 K) InSb bolometer is used for signal detection. This approach results in an extremely wide-band performance, thus making it possible to employ a variety of solid-state millimeter and submillimeter microwave sources in combination with a far infrared laser microwave source for performing multifrequency EMR experiments. A complexity of resonant structures and related technical problems such as microphonics at high magnetic fields is virtually eliminated. The system is simple, yet sensitive, and has been revealed to be extremely advantageous while solving such problems as observation of AFMR transitions in spin-ordered systems, g-factor resolution enhancement in complex organic radicals, and resonance signal detection in EMR-silent spin systems having integer spin and large zero field splitting. A technical description of the multifrequency high-field EMR facility is presented and results of its performance tests are given. The potential utility of using the multifrequency high-field methodology in EMR studies is illustrated with selected examples of its recent applications.Copyright 2000 Academic Press.

EATON G R, EATON S S.

High-field and high-frequency EPR

[J]. Appl Magn Reson, 1999, 16(2): 161-166.

DOI:10.1007/BF03161931      URL     [本文引用: 1]

BLOK H, DISSELHORST J, ORLINSKII S B, et al.

A continuous-wave and pulsed electron spin resonance spectrometer operating at 275 GHz

[J]. Journal of Magnetic Resonance, 2004, 166(1): 92-99.

PMID:14675824      [本文引用: 1]

An electron paramagnetic resonance (EPR) spectrometer is described which allows for continuous-wave and pulsed EPR experiments at 275 GHz (wavelength 1.1 mm). The related magnetic field of 9.9 T for g approximately 2 is supplied by a superconducting solenoid. The microwave bridge employs quasi-optical as well as conventional waveguide components. A cylindrical, single-mode cavity provides a high filling factor and a high sensitivity for EPR detection. Even with the available microwave power of 1 mW incident at the cavity a high microwave magnetic field B1 is obtained of about 0.1 mT which permits pi/2-pulses as short as 100 ns. The performance of the spectrometer is illustrated with the help of spectra taken with several samples.

LU J F, LIU Y.

Review on the development of electron paramagnetic resonance (EPR) in China in 50 years

[J]. Chinese J Magn Reson, 2011, 28(04): 564-572.

[本文引用: 1]

卢景雰, 刘扬.

中国电子顺磁共振(EPR)发展50年回顾

[J]. 波谱学杂志, 2011, 28(04): 564-572.

[本文引用: 1]

CHO F H, STEPANOV V, ABEYWARDANA C, et al.

230/115 GHz electron paramagnetic resonance/double electron-electron resonance spectroscopy

[J]. Methods Enzymol, 2015, 563: 95-118.

DOI:10.1016/bs.mie.2015.07.001      PMID:26478483      [本文引用: 3]

Electron paramagnetic resonance (EPR) and double electron-electron resonance (DEER) spectroscopies are powerful and versatile tools for studying local structures and dynamic properties of biological molecules. Similar to nuclear magnetic resonance (NMR) spectroscopy, EPR/DEER spectroscopies become more advantageous at higher frequencies and higher magnetic fields because of better spectral resolution as well as higher spin polarization. Here, we describe development of a high-frequency (HF) EPR/DEER spectrometer operating in the frequency range of 107-120 and 215-240 GHz and in the magnetic field range of 0-12.1 T, which has unique experimental capabilities such as enabling the complete spin polarization and wide-band DEER spectroscopy. Emphasis is given on the application of HF EPR/DEER techniques, and specific examples of HF EPR spectroscopy to drastically increase spin coherence in nanodiamonds as well as HF DEER spectroscopy to extract spin concentration in a diamond crystal are presented.© 2015 Elsevier Inc. All rights reserved.

WANG S L, LI L, OUYANG Z W, et al.

Development of high frequency electron spin resonance device with pulsed high magnetic field

[J]. Acta Physica Sinica, 2012, 61(10): 405-409.

[本文引用: 1]

王绍良, 李亮, 欧阳钟文, .

脉冲强磁场高频电子自旋共振装置的研制

[J]. 物理学报, 2012, 61(10): 405-409.

[本文引用: 1]

GABBASOV B, GAFUROV M, STARSHOVA A, et al.

Conventional, pulsed and high-field electron paramagnetic resonance for studying metal impurities in calcium phosphates of biogenic and synthetic origins

[J]. J Magn Magn Mater, 2019, 470: 109-117.

DOI:10.1016/j.jmmm.2018.02.039      URL     [本文引用: 3]

HARRABI R, HALBRITTER T, AUSSENAC F, et al.

Highly efficient polarizing agents for MAS-DNP of proton-dense molecular solids

[J]. Angew Chem Int Ed, 2022, 61(12): 1-9.

DOI:10.1002/(ISSN)1521-3757      URL     [本文引用: 3]

SWAPNALIN J, KUMAR N S, NAIDU K C B, et al.

Recent developments in electron paramagnetic resonance for spectroscopic applications

[J]. Biointerface Res Appl Chem, 2023, 13(1): 45.

DOI:10.33263/BRIAC      URL     [本文引用: 1]

UBBINK M, WORRALL J A R, CANTERS G W, et al.

Paramagnetic resonance of biological metal centers

[J]. Ann Rev Bioph Biom, 2002, 31: 393-422.

[本文引用: 1]

FITTIPALDI M, STEINER R A, MATSUSHITA M, et al.

Single-crystal EPR study at 95 GHz of the type 2 copper site of the inhibitor-bound quercetin 2,3-dioxygenase

[J]. Biophys J, 2003, 85(6): 4047-4054.

PMID:14645093      [本文引用: 1]

An electron-spin-echo-detected, electron-paramagnetic-resonance study has been performed on the type 2 copper site of quercetin 2,3-dioxygenase from Aspergillus japonicus. In the protein, copper is coordinated by three histidine nitrogens and two sulfurs from the inhibitor diethyldithiocarbamate. A single crystal of the protein was studied at 95 GHz and the complete g-tensor determined. The electron-paramagnetic-resonance data are compatible with two orientations of the principal g-axes in the copper center, one of which is preferred on the basis of an analysis of the copper coordination and the d-orbitals that are involved in the unpaired-electron orbital. For this orientation, the principal z-axis of the g-tensor makes an angle of 19 degrees with the Cu-N(His112) bond and the N of His112 may be considered the axial ligand. The singly occupied molecular orbital contains a linear combination of copper dxy and dyz-orbitals, which are antibonding with atomic orbitals of histidine nitrogens and diethyldithiocarbamate sulfurs. The orientation of the g-tensor for the quercetin 2,3-dioxygenase is compared with that for type 1 copper sites.

BARRA A L, HASSAN A K, JANOSCHKA A, et al.

Broad-band quasi-optical HF-EPR spectroscopy: application to the study of the ferrous iron center from a rubredoxin mutant

[J]. Appl Magn Reson, 2006, 30(3-4): 385-397.

DOI:10.1007/BF03166208      URL     [本文引用: 1]

DAVIS I, KOTO T, TERRELL J R, et al.

High-frequency/high-field electron paramagnetic resonance and theoretical studies of tryptophan-based radicals

[J]. J Phys Chem A, 2018, 122(12): 3170-3176.

DOI:10.1021/acs.jpca.7b12434      PMID:29488750      [本文引用: 1]

Tryptophan-based free radicals have been implicated in a myriad of catalytic and electron transfer reactions in biology. However, very few of them have been trapped so that biophysical characterizations can be performed in a high-precision context. In this work, tryptophan derivative-based radicals were studied by high-frequency/high-field electron paramagnetic resonance (HFEPR) and quantum chemical calculations. Radicals were generated at liquid nitrogen temperature with a photocatalyst, sacrificial oxidant, and violet laser. The precise g-anisotropies of l- and d-tryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 5-fluorotryptophan, and 7-hydroxytryptophan were measured directly by HFEPR. Quantum chemical calculations were conducted to predict both neutral and cationic radical spectra for comparison with the experimental data. The results indicate that under the experimental conditions, all radicals formed were cationic. Spin densities of the radicals were also calculated. The various line patterns and g-anisotropies observed by HFEPR can be understood in terms of spin-density populations and the positioning of oxygen atom substitution on the tryptophan ring. The results are considered in the light of the tryptophan and 7-hydroxytryptophan diradical found in the biosynthesis of the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase.

DAVIES M J.

Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

[J]. Methods, 2016, 109: 21-30.

DOI:S1046-2023(16)30143-8      PMID:27211009      [本文引用: 1]

Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the "gold standard" for the detection and characterisation of radicals in chemical, biological and medical systems. The article reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages and pitfalls of various approaches. When used with care, this technique can provide a huge amount of valuable data on the presence of radicals, their identity and information on their concentration, structure, mobility and interactions. It is however a technique that has limitations, and the novice user needs to understand the various pitfalls and shortcomings of the method to avoid making significant errors.Copyright © 2016 Elsevier Inc. All rights reserved.

BRACCI M, BRUZZESE P C, FAMULARI A, et al. Paramagnetic species in catalysis research: a unified approach towards(the role of EPR in) heterogeneous, homogeneous and enzyme catalysis[M]. Britain: The Royal Society of Chemistry, 2020.

[本文引用: 1]

PENG Z L, DALLAS J, TAKAHASHI S.

Reduction of surface spin-induced electron spin relaxations in nanodiamonds

[J]. J Appl Phys, 2020, 128(5): 1-8.

[本文引用: 3]

JACKSON C E, LIN C Y, VAN TOL J, et al.

Orientation dependence of phase memory relaxation in the V(IV) ion at high frequencies

[J]. Chemical Physics Letters, 2020, 739: 1-5.

[本文引用: 3]

EDINACH E V, USPENSKAYA Y A, GURIN A S, et al.

Application of high-frequency electron paramagnetic resonance/electron spin echo for the identification of the impurity composition and electronic structure of ceramics based garnets

[J]. Phys Solid State, 2019, 61(10): 1820-1828.

DOI:10.1134/S1063783419100135      [本文引用: 3]

SAIZ C L, DELGADO J A, VAN TOL J, et al.

2D correlations in the van der Waals ferromagnet CrBr3 using high frequency electron spin resonance spectroscopy

[J]. J Appl Phys, 2021, 129(23): 1-7.

[本文引用: 1]

KUMAR P, SANTALUCIA D J, KANIEWSKA-LASKOWSKA K, et al.

Probing the magnetic anisotropy of Co(II) complexes featuring redox-active ligands

[J]. Inorg Chem, 2020, 59(22): 16178-16193.

DOI:10.1021/acs.inorgchem.0c01812      PMID:33141572      [本文引用: 1]

Coordination complexes that possess large magnetic anisotropy (otherwise known as zero-field splitting, ZFS) have possible applications in the field of magnetic materials, including single molecule magnets (SMMs). Previous studies have explored the role of coordination number and geometry in controlling the magnetic anisotropy and SMM behavior of high-spin ( = 3/2) Co(II) complexes. Building upon these efforts, the present work examines the impact of ligand oxidation state and structural distortions on the spin states and ZFS parameters of pentacoordinate Co(II) complexes. The five complexes included in this study (-) have the general formula, [Co(Tp)()] (X = O, S; Y = N, O; = 0 or 1), where Tp is the scorpionate ligand hydrotris(3,5-diphenyl-pyrazolyl)borate(1-) and are bidentate dioxolene-type ligands that can access multiple oxidation states. The specific ligands used herein are 4,6-di--butyl substituted -aminophenolate and -aminothiophenolate ( and, respectively), -iminosemiquinonate and -semiquinonate radicals ( and, respectively), and -iminobenzoquinone (). Each complex exhibits a distorted trigonal bipyramidal geometry, as revealed by single-crystal X-ray diffraction. Direct current (dc) magnetic susceptibility experiments confirmed that the complexes with closed-shell ligands (,, and ) possess = 3/2 ground states with negative -values (easy-axis anisotropy) of -41, -78, and -30 cm, respectively. For and, antiferromagnetic coupling between the Co(II) center and -(imino)semiquinonate radical ligand results in = 1 ground states that likewise exhibit very large and negative anisotropy (-100 >> -140 cm). Notably, ZFS was measured directly for each complex using far-infrared magnetic spectroscopy (FIRMS). In combination with high-frequency and -field electron paramagnetic resonance (HFEPR) studies, these techniques provided precise spin-Hamiltonian parameters for complexes,, and. Multireference calculations, using the CASSCF/NEVPT2 approach, indicate that the strongly negative anisotropies of these Co(II) complexes arise primarily from distortions in the equatorial plane due to constrictions imposed by the Tp ligand. This effect is further amplified by cobalt(II)-radical exchange interactions in and.

MURATOVIC S, KARADENIZ B, STOLAR T, et al.

Impact of dehydration and mechanical amorphization on the magnetic properties of Ni(ii)-MOF-74

[J]. J Mater Chem C, 2020, 8(21): 7132-7142.

DOI:10.1039/D0TC00844C      URL     [本文引用: 2]

PAULIN J V, BATAGIN-NETO A, NAYDENOV B, et al.

High-field/high-frequency EPR spectroscopy on synthetic melanin: on the origin of carbon-centered radicals

[J]. Materials Advances, 2021, 2(19): 6297-6305.

DOI:10.1039/D1MA00446H      URL     [本文引用: 1]

High-field/high-frequency electron paramagnetic resonance spectroscopy was employed to synthesize melanin to provide relevant information on the carbon-centered free-radical nature of this biomaterial.

LI J X, TONG W.

Graphic user interface design of EPR spectrum simulation software EasySpin

[J]. Chinese J Magn Reson, 2023, 30(1): 100-110.

[本文引用: 1]

李晶鑫, 童伟.

EPR谱图模拟软件EasySpin的图形用户界面设计

[J]. 波谱学杂志, 2023, 30(1): 100-110.

[本文引用: 1]

GAFUROV M R, PONOMAREV A A, MAMIN G V, et al.

Application of pulsed and high-frequency electron paramagnetic resonance techniques to study petroleum disperse systems

[J]. Georesursy, 2020, 22(4): 2-14.

[本文引用: 1]

/