融合注意力机制和空洞卷积的3D ELD_MobileNetV2在肝结节分类中的应用
|
孙灏芸, 王丽嘉
|
Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification
|
SUN Haoyun, WANG Lijia
|
|
表3 消融实验结果
|
Table 3 Results of the ablation experiments
|
|
| | MobileNetV2 | L_MobileNetV2 | IECA_MobileNetV2 | DC_MobileNetV2 | ELD_MobileNetV2 | C0 | Precision | 0.588 | 0.688 | 0.750 | 0.609 | 0.786 | | Recall | 0.556 | 0.611 | 0.667 | 0.778 | 0.611 | | F1_Score | 0.571 | 0.647 | 0.706 | 0.683 | 0.688 | C1 | Precision | 0.611 | 0.600 | 0.684 | 0.706 | 0.682 | | Recall | 0.611 | 0.667 | 0.722 | 0.667 | 0.833 | | F1_Score | 0.611 | 0.632 | 0.703 | 0.686 | 0.750 | C2 | Precision | 0.762 | 0.824 | 0.750 | 0.812 | 0.933 | | Recall | 0.889 | 0.778 | 0.833 | 0.722 | 0.778 | | F1_Score | 0.821 | 0.800 | 0.789 | 0.765 | 0.848 | C3 | Precision | 0.875 | 0.842 | 0.882 | 0.938 | 0.810 | | Recall | 0.778 | 0.889 | 0.833 | 0.833 | 0.944 | | F1_Score | 0.824 | 0.865 | 0.857 | 0.882 | 0.872 | 总体 | Precision | 0.709 | 0.739 | 0.767 | 0.766 | 0.803 | | Recall | 0.709 | 0.736 | 0.764 | 0.750 | 0.792 | | F1_Score | 0.709 | 0.737 | 0.765 | 0.758 | 0.797 | | Accuracy | 0.708 | 0.736 | 0.764 | 0.750 | 0.792 |
|
|
|