融合注意力机制和空洞卷积的3D ELD_MobileNetV2在肝结节分类中的应用
孙灏芸, 王丽嘉

Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification
SUN Haoyun, WANG Lijia
表4 不同网络模型的分类性能比较
Table 4 Comparison of classification performance across different models
AlexNet VggNet16 ResNet50 ConvNeXt ELD_MobileNetV2
C0 Precision 0.483 0.588 0.647 0.714 0.786
Recall 0.778 0.556 0.611 0.556 0.611
F1_Score 0.596 0.571 0.629 0.625 0.688
C1 Precision 0.667 0.647 0.600 0.640 0.682
Recall 0.667 0.611 0.667 0.889 0.833
F1_Score 0.667 0.629 0.632 0.744 0.750
C2 Precision 0.667 0.667 0.750 0.857 0.933
Recall 0.556 0.778 0.667 0.667 0.778
F1_Score 0.606 0.718 0.706 0.750 0.848
C3 Precision 0.900 0.824 0.789 0.842 0.810
Recall 0.500 0.778 0.833 0.889 0.944
F1_Score 0.643 0.800 0.811 0.865 0.872
总体 Precision 0.679 0.682 0.697 0.763 0.803
Recall 0.625 0.681 0.695 0.750 0.792
F1_Score 0.651 0.681 0.695 0.757 0.797
Accuracy 0.625 0.681 0.694 0.750 0.792