融合注意力机制和空洞卷积的3D ELD_MobileNetV2在肝结节分类中的应用
|
孙灏芸, 王丽嘉
|
Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification
|
SUN Haoyun, WANG Lijia
|
|
表4 不同网络模型的分类性能比较
|
Table 4 Comparison of classification performance across different models
|
|
| | AlexNet | VggNet16 | ResNet50 | ConvNeXt | ELD_MobileNetV2 | C0 | Precision | 0.483 | 0.588 | 0.647 | 0.714 | 0.786 | | Recall | 0.778 | 0.556 | 0.611 | 0.556 | 0.611 | | F1_Score | 0.596 | 0.571 | 0.629 | 0.625 | 0.688 | C1 | Precision | 0.667 | 0.647 | 0.600 | 0.640 | 0.682 | | Recall | 0.667 | 0.611 | 0.667 | 0.889 | 0.833 | | F1_Score | 0.667 | 0.629 | 0.632 | 0.744 | 0.750 | C2 | Precision | 0.667 | 0.667 | 0.750 | 0.857 | 0.933 | | Recall | 0.556 | 0.778 | 0.667 | 0.667 | 0.778 | | F1_Score | 0.606 | 0.718 | 0.706 | 0.750 | 0.848 | C3 | Precision | 0.900 | 0.824 | 0.789 | 0.842 | 0.810 | | Recall | 0.500 | 0.778 | 0.833 | 0.889 | 0.944 | | F1_Score | 0.643 | 0.800 | 0.811 | 0.865 | 0.872 | 总体 | Precision | 0.679 | 0.682 | 0.697 | 0.763 | 0.803 | | Recall | 0.625 | 0.681 | 0.695 | 0.750 | 0.792 | | F1_Score | 0.651 | 0.681 | 0.695 | 0.757 | 0.797 | | Accuracy | 0.625 | 0.681 | 0.694 | 0.750 | 0.792 |
|
|
|