基于交叉自监督和DWI的NIID智能诊断方法
曹飞, 徐芊芊, 陈浩, 祖洁, 李晓文, 田锦, 鲍磊

An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI
CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei
图3 交叉自监督学习架构. A为网络整体架构,B为ResNet50主体结构,C为ViT主体结构. logits1为ResNet50的输出,logits2为ViT的输出,Conv为卷积操作,Norm为归一化层
Fig. 3 Architecture of cross self-supervision. The part of A shows the overall network structure, while the part of B displays the main structure of ResNet50, the part of C displays the main structure of ViT. logits1 is the output of ResNet50, logits2 is the output of ViT, Conv is the convolution operation, and Norm is the normalization layer