波谱学杂志, 2025, 42(2): 205-220 doi: 10.11938/cjmr20243126

综述评论

基于扩散磁共振的大脑浅表白质纤维束研究进展

孟靖欣, 王远军,*

上海理工大学 医学影像技术研究所,上海 200093

Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging

MENG Jingxin, WANG Yuanjun,*

Institute of Medical Imaging Technology, University of Shanghai for Science and Technology, Shanghai 200093, China

通讯作者: *Tel: 13761603606, E-mail:yjusst@126.com.

收稿日期: 2024-08-6   网络出版日期: 2024-10-21

基金资助: 上海市自然科学基金资助项目(18ZR1426900)

Corresponding authors: *Tel: 13761603606, E-mail:yjusst@126.com.

Received: 2024-08-6   Online: 2024-10-21

摘要

近年来,基于扩散磁共振成像的大脑浅表白质纤维束成像技术取得了显著进展.浅表白质纤维束是连接皮层和皮层下神经结构的重要通路,在构建完整人类连接组和神经病理学研究中具有重要意义.本文首先总结了浅表白质纤维束成像技术的发展,其次着重讨论了不同方法在浅表白质纤维束分割中的优缺点,之后探讨了浅表白质纤维束图谱的构建流程,最后总结并对浅表白质纤维束成像技术与分割方法的研究方向进行了展望.

关键词: 扩散磁共振成像; 浅表白质; 纤维束成像; 分割; 脑图谱

Abstract

In recent years, significant progress has been made in tractography of superficial white matter in the brain based on diffusion magnetic resonance imaging. Superficial white matter fiber tracts serve as critical pathways connecting cortical and subcortical structures, playing a vital role in the construction of complete human connectome and neuropathological studies. This paper first summarizes the development of superficial white matter tractography techniques. Subsequently, it evaluates the strengths and weaknesses of different methods employed in superficial white matter fiber tract segmentation. Afterwards, the construction process of superficial white matter fiber tract atlas is discussed. Finally, this review concludes with an outlook on future research direction of superficial white matter tractography technology and segmentation methods.

Keywords: diffusion magnetic resonance imaging; superficial white matter; tractography; segmentation; atlas

PDF (911KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孟靖欣, 王远军. 基于扩散磁共振的大脑浅表白质纤维束研究进展[J]. 波谱学杂志, 2025, 42(2): 205-220 doi:10.11938/cjmr20243126

MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging[J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220 doi:10.11938/cjmr20243126

引言

浅表白质(superficial white matter,SWM)位于大脑皮质下的轴突层,它主要由短关联纤维或U型纤维组成,这些纤维连接着由一个或几个皮质褶皱分隔开的邻近皮质区域[1].SWM是大脑最后形成髓鞘的组织区域,因此更能表现出大脑成熟过程中发生的损害和变化[2].最近的一些研究表明,SWM纤维与多种大脑疾病密切相关,例如:自闭症、精神分裂症、脑炎、癫痫、帕金森病和脑小血管病,并且在构建完整人类连接组以及解释人类大脑功能上,SWM成像研究有着重要意义[3].尽管SWM的纤维连接数量大约是深部白质(deep white matter,DWM)的两倍,但由于SWM尺寸小、结构复杂性高、高度弯曲,以及皮层折叠的高度变异性,对SWM纤维束的提取上存在一定困难[4].

扩散磁共振成像(diffusion magnetic resonance imaging,dMRI)作为一种非侵入性的成像技术,已成为研究神经解剖学和脑连接的重要工具,能够探测组织内水分子的扩散模式,从而揭示组织微结构信息[5].近年来,基于dMRI的浅表白质纤维成像研究有所增加.Conturo等人[6]是最早研究SWM纤维成像工作的研究者之一,他们使用纤维束追踪技术来识别白质(white matter,WM)束,包括一些U型纤维,该研究表明SWM纤维结构的各向异性低于DWM.Catani等人[7]通过放置感兴趣区域(region of interest,ROI)来研究SWM纤维束的连接,该研究证明了一条位于下纵束外侧U型纤维,连接大脑邻近的脑回.Guevara等人[8]通过聚类方法来研究SWM纤维束图谱的,该研究提出了一种基于多受试者的纤维束图谱,该图谱中除了DWM束还包含每个半球的47个SWM束.Xue等人[9]通过深度学习来进行SWM纤维束的分割工作,该工作促进了深度学习在SWM纤维束研究的发展.在国内,纤维束追踪算法研究起步较晚,Feng等人[10]提出了一种群智能全局优化算法,该算法基于von Miser-fisher分布函数的信息素模型,通过信息素模型诱导迭代优化纤维轨迹.Zhang[11]提出一种脑纤维流线微分方程跟踪算法,在跟踪过程中搜索出邻域体素中与自身行进方向相近的多个纤维方向,建立一个三维空间上连续平滑的方向流场来表征纤维流线的分布,减小纤维建模误差带来的方向估计不准确的影响,通过龙格库塔数值积分方法求解流线微分方程,得到任意空间区域内整齐、平滑的纤维束集.Yue等人[12]提出了一种基于非局部约束球面反卷积模型的确定型纤维追踪算法,分数阶的非局部特性使得纤维方向分布模型估计的误差更小,而邻域信息的引入保证了空间一致性,可以减少噪声的影响,从而使得纤维束追踪更加准确.上述国内研究者提出的纤维束追踪算法都是针对于DWM,对于SWM的研究,国内的研究者也做出了巨大的贡献.Zhang等人[13]通过纤维聚类方法分别对人类、黑猩猩和猕猴大脑的扩散张量成像(diffusion tensor imaging,DTI)、高角度分辨率扩散成像(high angular resolution diffusion imaging,HARDI)和扩散光谱成像(diffusion spectrum imaging,DSI)数据进行U型纤维研究,他们验证了U型纤维的存在,并证明这些纤维通过围绕皮质沟来连接相邻的脑回.Wu等人[14]通过手动ROI分割方法在DSI数据上对颞叶、顶叶、枕叶的短纤维束进行分割,确定了三个纤维束即上纵束后段、垂直枕束和颞顶叶连接束,这些研究得到了纤维解剖技术的验证.Zhang等人[15]是国内第一个采用深度学习的方法对SWM进行分割的研究组,在他们这项工作中,提出了一种解剖引导的SWM分割框架(Anat-SFSeg)来提高SWM分割的性能.该框架由独特的纤维解剖图谱和基于点云的深度学习网络组成,该网络框架在所提供的数据集上实现了最高的分割准确度,并且在临床数据集上表现出了很好的泛化能力.上述SWM纤维研究都是依赖于现有的DWM纤维束追踪方法[16],没有一种方法专门应用于SWM纤维束.近几年,一些研究者提出了仅针对于SWM纤维束成像的算法[17],这些算法的提出推动了SWM纤维束分析和应用的发展.

在基于dMRI的SWM纤维研究领域,以往研究仅对SWM传统分割方法和应用进行了概述[18],本文在此基础上加入了最新的基于深度学习SWM分割方法、SWM纤维束图谱构建和SWM纤维追踪新技术的研究进展.本文探讨的SWM纤维追踪技术未来有望成为该领域新的研究热点.

本文的内容如图1所示,第一节介绍了SWM纤维成像技术;第二节介绍了SWM纤维的分割算法,包括基于ROI的分割方法、基于流线标记的分割方法和基于ROI与聚类相结合的分割方法;第三节介绍了SWM纤维束图谱的构建;第四节对本文综述进行总结并且对该领域未来的研究方向进行展望.

图1

图1   SWM成像研究. (a) SWM纤维束成像技术;(b) SWM纤维束分割算法;(c) SWM纤维束图谱构建. 图中英文缩写的中文解释见附表A1

Fig. 1   Study of SWM tractography (a) SWM tractography technique; (b) SWM fiber tract segmentation; (c) SWM fiber tract atlas construction. See Appendix 1 for Chinese explanations of the English abbreviations in the figure


1 SWM纤维束追踪技术

在过去的十几年中,基于dMRI的大脑纤维束成像技术取得了巨大进展,dMRI的空间和角度分辨率显著提高[19].现有的大脑纤维束研究主要集中在DWM[20],为了构建完整人类连接组,一些研究者开始关注SWM纤维的连接.然而,现有的大脑纤维束成像技术都是针对于DWM来开发的,为了适应SWM的复杂纤维,一些研究者提出了专门针对于SWM纤维束连接的算法.这些算法考虑到了SWM高度弯曲、回旋偏差以及个体间皮层折叠模式高度变异性的特征,从而提高了SWM纤维束的成像质量.本节将会讨论如何从解决高度弯曲和回旋偏差问题的角度来提高SWM纤维束追踪技术.

1.1 高度弯曲

在dMRI纤维束成像技术的发展初期,一个主要的挑战是纤维追踪算法的高度弯曲偏差问题.这种偏差产生的原因是因为算法在追踪纤维束时,通常只在当前位置的局部纤维方向上采取一个有限的步长,这种方法被称为“一阶”方法.当纤维束的路径发生弯曲时,这种一阶方法往往会低估纤维的实际曲率,导致追踪出的路径出现偏差[21].虽然通过减小步长,即采取更小的图像体素尺寸,可以在一定程度上缓解这个问题,但这种方法并不是最理想的解决方案.更直接的方法是使用高阶积分技术,这种技术在追踪过程中能够直接考虑纤维束的曲率.然而,当需要与能够处理纤维交叉的扩散模型兼容时,这种高阶积分方法的实现就变得更加困难.简而言之,尽管高阶方法理论上能更准确地追踪纤维束,但在实际应用中,如何有效地整合这些方法仍然是一个技术难题[22].

由于SWM存在大量的高度弯曲纤维,现有的基于DWM纤维追踪算法不能重建出这种高度弯曲的纤维结构.为了解决该问题,Gahm等人[23]提出了一种基于表面的SWM纤维束追踪框架,该框架通过测量表面切空间上的角度变化,在三角网格内通过角度阈值控制路径的平滑度,并在跨三角网格时测量交叉角度,以确保追踪方向的准确性,这种方法利用了皮质表面的内在几何特性,更符合U型纤维沿着皮质表面的解剖学特性.与Gahm等人提出的确定性纤维束追踪算法不同,Nie等人[17]提出了一种新的基于表面的概率追踪框架,该框架将3D纤维取向分布(FOD)的球谐系数转换到每个三角形表面的局部坐标系中,从而将FOD投影到SWM的切空间,利用平行传输实现流线在SWM上的内在传播,根据概率抽样的纤维方向进行追踪,避免了传统基于体积追踪方法中必要的但具有挑战性的急剧转向.该算法重建了中央前回和中央后回的U型纤维,通过4个定量指标和MRtrix提供的基于体积的纤维束追踪算法以及基于表面的确定性追踪算法做对比,4个定量指标分别为重建纤维束的数量、U型纤维的连接完整性、U型纤维比率以及拓扑规律性.在重建纤维束的数量这个指标上,作者所提出的方法在所有三种方法中生成了最有效的连接,48.5%的种子点生成了有效连接.对于基于表面的确定性追踪算法,只有29.5%的种子点发展成有效连接.对于MRtrix的基于体积的纤维束追踪算法,只有6%的种子点生成有效的U型纤维连接.U型纤维的连接完整性是指将两个脑回的骨架均匀分成若干部分,统计被重建的纤维束是否在这些部分中,实验表明作者提出的算法重建出的U型纤维更完整.U型纤维比率是指两个端点之间的距离与纤维总长度的比值,较小的U型纤维比率表示成功重建有效的U型纤维,作者提出的算法相较于其他算法U型纤维比率是最低的.拓扑规律性是使用经典的多维标定方法将纤维束的起点和终点投影到二维平面,并计算它们之间的Procrustes距离,以评估重建纤维的拓扑规律性,通过计算作者提出的算法距离更短,这表明通过约束沿SWM表面的纤维追踪,可以生成形状更规则的U型纤维.

1.2 回旋偏差

在纤维束成像技术中,回旋偏差是指追踪的纤维路径错误地终止在脑回上,而不是正确的脑沟中[24],这种偏差会降低成像结果与实际解剖结构的一致性.回旋偏差的产生有多方面的原因,其中包括大脑皮质灰质和SWM交界处轴突排列的复杂性.此外,由于MRI的空间分辨率有限,部分体积效应使得从重建的FOD中区分复杂的纤维结构变得困难.

提高MRI图像的分辨率有助于减少这种偏差,但这种做法受到dMRI数据信噪比的限制.即使在高分辨率的dMRI数据上进行操作,现有的纤维束成像算法仍然存在偏差,与组织学染色揭示的真实纤维投影相比,脑回冠的纤维路径密度通常比脑沟岸更大[25].此外,大脑皮质的复杂折叠和卷曲也给长程纤维连接的准确重建带来了挑战.尽管提高分辨率可以改善成像质量,但要完全消除回旋偏差,还需要开发一种新颖的成像技术.

SWM纤维在低空间分辨率下很难被清晰识别,为了提高空间分辨率,改善图像质量,Song等人[26]使用了0.85毫米各向同性空间分辨率的DTI技术,该成像技术显著提高了短关联纤维(U型纤维)的追踪效果.该工作首次通过提高DTI的空间分辨率来进行短关联纤维的追踪,但是该技术在活体大脑连接成像中尚未常规实现.由于SWM区域存在回旋偏差,为了减少回旋偏差,一些研究者做出了巨大的贡献.St-Onge等人[27]提出了一种基于表面流的增强纤维束追踪算法.表面流是平均曲率流的改进,通过基于从T1加权图像提取的皮质表面几何形状(顶点、法线、面积和曲率)和改进表面播种和终止策略,以提高SWM纤维束成像的分辨率和精度.该方法减少了回旋偏差、长度偏差和假阳性流线的数量.

近年来,一些研究者使用非对称纤维方向分布来解决SWM回旋偏差的问题,Bastiani等人[28]提出了一种改进的纤维束成像技术,该技术基于非对称纤维方向分布,能够通过分析周围体素的空间信息来减少成像过程中的回旋偏差.这种方法可以更精确地推断出体素内部的纤维结构,尤其是对于那些结构复杂的纤维,如急剧弯曲和扇形分布纤维.通过与高分辨率组织学数据的比较,验证了该方法能够可靠地估计复杂的纤维模式.同样基于非对称纤维方向分布方法,Wu等人[29]提出了一种基于全局估计框架的非对称纤维方向分布函数的方法,以减轻大脑皮层纤维追踪中的回旋偏差.通过多组织全局估计框架计算非对称纤维方向分布函数,该方法能够使纤维流线在脑回叶片的灰质-白质边界处更锐利地转向皮层灰质,从而提高了纤维追踪的准确性,并在不同场强(3 T和7 T)的磁共振成像数据之间提供了高度一致的结果.这项工作解决了现有纤维追踪算法中存在的回旋偏差问题,即纤维流线主要终止于脑回顶部而非脑沟边缘,导致连接分析的严重偏差.

Shastin等人[30]采用了表面种子点选择策略,提出了一种全脑短关联纤维算法,该算法加入了纤维流线的过滤策略,包括灰质-灰质滤波、半球-半球滤波和灰质-白质-灰质滤波.所提出的算法能够产生更长的流线并且倾向于连接脑回,同样减少了回旋偏差.与上述减少回旋偏差的方法不同,Cottaar等人[31]将脑白质在脑回叶片中的建模作为一个连续的无散度向量场,以减少在白质和皮层灰质边界处的回旋偏差,该算法同时考虑了纤维密度和方向,鼓励沿皮层白/灰质边界的解剖学合理流线密度分布,同时保持与扩散MRI估计的纤维方向一致.

2 SWM纤维束分割方法

基于dMRI的纤维束成像是重建人脑纤维连接最广泛使用的方法.随着基于dMRI采集和整个纤维处理流程的改进导致了纤维的更好重建,特别是短关联纤维.不同于DWM纤维束,SWM纤维束的个体间高度变异性使得不同的分割方法很难进行比较.根据识别纤维束的不同类型,本文将这些分割方法分为基于ROI的分割方法、基于流线标记的分割方法、基于ROI选择和聚类相结合的分割方法,如图2所示.

图2

图2   SWM纤维束分割方法总结

Fig. 2   Summary of SWM fiber tract segmentation methods


2.1 基于ROI的分割方法

基于ROI的SWM分割方法是指在灰质和白质区域中选择ROI,使得纤维束流线包含在该区域或者排除该区域.包含ROI通常选择在灰质和白质区域中,分别定义流线的端点和整体纤维流线;排除ROI用于防止流线穿过不需要的区域.根据ROI的选择,将这些方法分为手动ROI选择、自动ROI选择和半自动ROI选择.

2.1.1 手动ROI选择

传统的SWM纤维束分割方法依赖于手动纤维流线选择,也称为虚拟解剖,解剖学专家手动在大脑中绘制的ROI交互地选择纤维束流线[32].通常,包含ROI选择在皮质和皮质下,以定义流线应终止的位置,或者在白质中选择ROI,以定义流线应经过的位置,排除ROI选择的其他区域,以排除不需要的纤维流线.手动纤维流线选择被认为是纤维束追踪中描绘解剖纤维束的黄金标准,并已广泛用于验证其他解剖纤维束识别技术.Catani等人[7]是最早通过手动放置ROI来研究SWM纤维束的连接,该研究通过放置两个ROI证明了枕颞区存在U型纤维,且连接大脑邻近的脑回.Wakana等人[33]研究了大脑中的长纤维和短关联纤维.研究发现,额叶区和枕叶区存在短关联纤维,这些短关联纤维可能是额叶上纵束的一部分.Catani等人[34]在他第一个工作的基础上使用两个感兴趣区域在TrackVis中进行虚拟解剖,以隔离单一的纤维束,最后重建出额叶和顶叶的短关联纤维.Wu等人[14]利用DSI软件中放置排除的纤维流线区域来提取短关联纤维连接,该研究集中在颞叶、顶叶和枕叶,最终确定了三个束:上纵束后段,连接颞中回和下回的后部以及角回和边缘上回;垂直枕束,连接下顶叶和下颞叶和枕叶;以及一种新型的颞顶连接,将颞下回、颞中回和梭状回以及枕下叶与顶上叶相互连接.Rojkova等人[35]通过47名受试者的HARDI数据构建统计图谱,并研究他们在年龄和教育方面的变异性.该图谱追踪出30个额叶短U型束,为临床提供了有价值的研究.Burks等人[36]通过手动定义ROI来启动纤维追踪,研究顶下小叶的纤维束连接关系,研究发现短关联纤维连接上脑回和角回,并将这两个回连接到顶上小叶.Catani等人[37]同时研究人类和猴子顶叶的短关联纤维连接,最后通过实验在顶叶内侧和外侧都发现了短的U型纤维.

尽管这些研究都能够获得非常明确的SWM纤维束,为大脑的短连接提供了新的见解,但是这些研究仅限于大脑的特定区域.Shinohara等人[38]通过DSI软件追踪纤维束成像成功地揭示了一种新型的U型纤维,这些U型纤维与在沟底脑回间U型纤维不同,它隐藏在脑回白质脊中并沿着脑回内U型纤维延伸.脑回内和脑回间的U型纤维从不同方向会聚到白质脊的交界区域,形成新的解剖结构,即“金字塔形交叉”. 形成金字塔形交叉的U型纤维也为交叉点之间的信息传递提供了路线.这项研究发现在每个外侧皮质表面平均有97个金字塔形交叉,它们可能成为大脑皮层分割的新解剖标志.

2.1.2 自动ROI选择

尽管手动选择ROI是描绘纤维束的黄金标准,但是手动选择ROI非常耗时且需要具备专业临床解剖知识的专家,这就造成临床和专家劳动力成本较高.目前有很多研究者抛弃了手动ROI选择,改为自动ROI的选择.大多数基于自动ROI的方法利用大脑ROI图谱并使用图像配准来自动将图谱标准空间中的ROI与受试者空间对齐.Oishi等人[39]是第一个通过自动选择ROI来进行SWM纤维束分割的研究者,他们使用了81名健康受试者的DTI数据,创建了基于群体平均的白质解剖图谱,识别了9个常见的脑回刀片状的解剖区域,并将它们进一步划分为21个子区域,使用定义的SWM区域作为ROI,重建感兴趣的SWM纤维束,并在10名未包含在该图谱数据集中的正常受试者的数据上重复实验,以验证所识别的纤维束的可重复性,结果表明在健康人群中可重复识别出连接相邻回的四条短关联纤维束.

Zhang等人[40]提出一种自动化方法,利用存储在DTI基础脑图谱中的关于纤维束轨迹的解剖知识,以非线性配准方法配准到单个受试者的DTI数据,从而自动化地重建大量白质纤维束,尤其是重建出29个短关联纤维束.Pardo等人[41]使用同样的方法,将30个受试者的HARDI数据非线性配准到JHU MNI SS WMPM TypeII图谱,根据每个束连接的两个皮层区域,分割40个短关联白质纤维束,并研究获得的SWM纤维束的可变性.Ouyang等人[42]的工作与其他研究者略有区别,他们将21名受试者的DTI数据的大脑皮层分割为每个半球34个脑回,连接两个脑回的纤维被提取到整个大脑,并仅将那些连接相邻脑回的纤维归类为短关联纤维,并提出了皮层连接成熟指数(cortical connectivity maturation index,CCMI),CCMI通过区分长纤维和短关联纤维,量化了短关联纤维的数量,这在以往的研究中往往被忽视.为了研究U型纤维的可重复性和可靠性,Movahedian等人[43]使用具有300 mT/m最大梯度幅度的先进MRI扫描仪,实现亚毫米级分辨率的扩散MRI,对视觉皮层V1和V2区域之间的解剖连接进行U型纤维追踪,通过在不同参与者和独立复制组中重复测量,展示了所提出U型纤维连接映射方法的高重复性和可靠性.

2.1.3 半自动ROI选择

基于自动选择ROI的SWM纤维束分割方法依赖于标准图谱的质量以及配准过程,解剖区域在不同受试者和病理之间存在差异,而且在定义好的ROI区域会捕获大量的异常纤维流线.为了解决上述问题,一些研究者提出了半自动ROI选择算法,通过标准图谱自动选择ROI区域,并使用手动ROI放置排除一些异常纤维流线.Vergani等人[44]通过非线性变换,将每个受试者配准到蒙特利尔神经研究所(montreal neurological institute,MNI)标准空间,选择辅助运动区为研究对象,研究其短关联纤维的连接,并通过手动放置ROI排除区域,以排除剩余的虚假流线或解剖学上不一致的流线.实验发现U型纤维在中央前沟和扣带沟中存在,中央前回和辅助运动区相连接,辅助运动区和扣带回相连接.与上述半自动选择ROI的工作不同,Magro等人[45]通过临床专家手动绘制2D ROI区域,然后自动扩充到3D脑回叶片,使用纤维束成像研究中央前回和中央后回的短关联纤维连接.

总体而言,由于仅基于ROI的方法分割SWM纤维束对纤维束的末端区域比较敏感,并且由于没有考虑与纤维主体相关的属性,因此这些方法有时不会产生合理的结果.

2.2 基于流线标记的分割方法

基于流线标记的分割方法是指为每个单独的流线分配解剖标签.通常,流线标记是通过计算每条流线与参考区域分割中标记流线的几何距离来分配流线标签完成的[46].流线标记的分割方法可以大致分为基于几何距离的流线标记、基于聚类的流线标记和基于深度学习的流线标记.

2.2.1 基于几何距离的流线标记

基于几何距离的流线标记方法是指为每条流线进行标记来分配解剖标签.常用的几何距离是欧几里得距离和流线长度,由于SWM纤维束个体间差异较大,单纯的欧几里得距离和流线长度不能满足SWM纤维束的分割.Guevara等人[47]考虑了纤维的空间方向,引入了一种新的纤维距离度量,以更精细地推断短束周围的纤维图谱,并提出了一种子图集距离度量方法,用于量化两个不同个体的纤维集合之间的相似性,最后通过流形学习方法根据纤维束的几何距离,在多维空间中将人群划分为具有相似区域纤维组织的群体,在中央沟和颞上沟解开了浅层白质束的组织变异性.Vindas等人[48]提出了一种名为GeoLab的分割方法,该方法使用6个参数描述纤维束的几何特征,包括流线长度、到束质心的欧几里得距离、平面间角度、方向间角度、形状角和最小化的最大欧几里得距离,这些几何特征能够从单个受试者中高效地分割出数百个SWM束.

2.2.2 基于聚类的流线标记

为了减少每个流线的标记量,许多流线标记方法首先将流线分组为簇,然后为每个簇分配解剖标签,这种方法被称为聚类方法.Guevara等人[49]是第一个在纤维束聚类中涉及SWM工作的,他们的工作通过层次聚类和纤维欧几里得距离测量来对整个大脑中的短关联纤维进行分组,提出了一种基于多受试者的纤维束图谱,该图谱中除了DWM图谱还包含每个半球的47个SWM束.该研究主要对DWM进行聚类,并未对SWM进行针对性的研究.Zhang等人[13]的研究是第一个仅针对于SWM纤维束的研究工作,他们同样使用欧几里得距离进行纤维聚类,从DTI、HARDI、DSI数据中识别和表征U型纤维,证明了大多数U型纤维通过沿脑沟来连接相邻的脑回.Román等人[50]提出的方法是Guevara等人提出方法的改进,该方法专门针对短关联纤维进行聚类,并且只选择35~85 mm的短纤维,同时该方法还使用了Desikan-Killiany FreeSurfer皮质分区[51]自动命名生成SWM纤维束,最终通过74名健康受试者的高质量HARDI数据生成了一个包含左半球44个、右半球49个以及两个半球共有的33个SWM纤维束的图谱.

为了创建一个全脑的纤维束图谱,Zhang等人[52]利用来自100名受试者的信息,通过群组纤维束配准和谱聚类方法,将全脑纤维束分割成多个纤维聚类,创建了一个基于纤维的白质图谱,包括58个DWM纤维束和198个短程和中程的SWM纤维束.该图谱在多个受试者中被证明是稳定的,在所有受试者中都检测到了图谱中注释的99%以上的纤维束.Pron等人[53]只研究了中央沟的U型纤维,通过k-medoids聚类算法在左脑中央沟进行聚类,分割出五条U型纤维.基于这个工作,Pron等人[54]在后续的研究中又完善了表征中央沟U型纤维的工作,他们使用基于密度的噪声应用空间聚类(DBSCAN)算法对连接空间中的群体连接性轮廓进行聚类,以提取纤维束,在大脑左右半球的中央沟周围各提取出五条U型纤维,并证明了手功能区的U型纤维与用手习惯的显著关系.

不同的聚类算法会导致不同的SWM纤维束分组,并且对于相同的算法,不同的参数也会产生不同的SWM纤维束配置,所以没有一种聚类算法可以适应SWM复杂的纤维束结构.

2.2.3 基于深度学习的流线标记

基于深度学习的流线标记分割方法是根据已有的纤维束分割数据训练模型,并预测新受试者中每个流线的解剖标签.现有的基于深度学习方法的纤维束分割方法大多数都是针对于DWM纤维束进行分割,很少有针对于SWM纤维束进行分割的方法.Xue等人[55]提出了一个名为Superficial White Matter Analysis(SupWMA)的新型两阶段深度学习框架,用于从全脑纤维束中高效且一致地分割198个SWM簇.该深度学习框架适应了基于点云的网络到SWM分割任务,在第二阶段使用监督对比学习,以增强SWM纤维束的特征学习,通过数据增强技术获得SWM合理纤维束和异常值之间更具区分性的表示.该研究是第一个通过深度学习来进行SWM纤维束分割的工作.Zhang等人[15]提出了一种新的基于解剖学引导的SWM纤维束分割框架,该框架引入了一种独特的纤维解剖学描述符,称为FiberAnatMap,它结合了个体和群体水平的解剖学特征,利用基于点云深度学习网络,将纤维的空间坐标和FiberAnatMap作为输入,提高了分割的准确性,用于改善深度学习网络对SWM纤维束的分割性能.

2.3 基于ROI选择和聚类相结合方法

基于ROI选择和聚类相结合的方法是指在提前定义好的ROI区域进行聚类.ROI选择可以提取和标记有意义的纤维束区域,并加快聚类速度,聚类可以有效过滤异常值,将两者相结合可以分割出有解剖学意义的纤维束.基于这种思想,一些混合的SWM纤维束分割方法被提出,Guevara等人[56]通过基于ROI选择和聚类的算法创建了全脑的SWM纤维束图谱,首先根据Desikan-Killiany图谱对每个受试者的T1加权MRI图像进行皮层分割,接着利用皮层分割结果,识别连接不同皮层ROI的纤维,最后通过受试者内聚类和受试者间聚类创建出最终的SWM纤维束图谱.Román等人[57]同样用这种方法进行SWM纤维束图谱的构建,与上述工作不同的是该研究首先进行纤维束聚类,再根据ROI分组.具体做法是首先在每个受试者内部,使用快速纤维聚类(fast fiber clustering,FFClust)算法对纤维进行聚类,以形成紧凑的纤维簇,每组纤维代表一个区域的纤维簇,并生成每个簇的质心.其次,基于Desikan-Killiany图谱将所有受试者的纤维簇质心按连接的大脑区域分割,质心会根据其连接的脑区分为不同的子组,每个脑区的质心会随机分成10个子组,以减小计算复杂度.接着通过计算质心之间的欧几里得距离并构建亲和图,然后执行层次聚类,将每个质心簇分为多个层级,最终选择距离在一定范围内的质心进行聚类.然后,执行组间聚类以选择最具代表性的聚类,并对它们进行标记以识别连接的区域.最后,使用QuickBundles算法对标记的聚类进行最终的重组,形成清晰的纤维束,构成最终的图谱.

表1按照SWM纤维束的分割方法总结了本节提到的SWM研究区域以及主要连接和发现.

表1   SWM纤维束分割方法研究

Table 1  SWM fiber tract segmentation method studies

第一作者研究区域分割方法主要连接和发现定量评价
分割数量准确率%
Catani[7]枕叶、颞叶ROI/手动选择枕颞外侧区相邻回的下纵束1/
Wu[14]颞叶、顶叶、枕叶ROI/手动选择上纵束后段连接颞中回和颞下回的后部与角回和缘上回;垂直枕束连接下顶叶、颞叶和枕叶;新的颞顶叶连接,将颞下回、颞中回、枕颞外侧回以及枕叶下部与顶叶上部互连3/
Wakana[33]全脑ROI/手动选择上纵束的一部分;枕叶束2/
Catani[34]额叶、中央沟、中央前沟、岛沟、额缘沟ROI/手动选择PrCG-PoCG,PrCG-MFG,SFG-IFG,SFG-MFG,FOP,FMT,FSL,FIL,Ins-Or/Tr/Op/PrCG/SuCG13/
Rojkova[35]额叶ROI/手动选择连接中央前回和中央后回的U型纤维;额叶斜束;连接额叶和岛叶的五个U型纤维;额叶上纵束和下纵束;额哐束和额边缘束30/
Burks[36]顶下小叶ROI/手动选择连接缘上回和角回的U型纤维;连接颞上沟边缘正下方和颞叶的U型纤维;连接侧裂末端和额叶的U型纤维3/
Catani[37]顶叶ROI/手动选择SMG-SPL,AG-SPL,PoCG-AG,PoCG-SMG,PoCG-SPL,AG-SMG,SMG-SMG,aPrCu-pPrCu,SPL的前后连接和内外侧连接9/
Shinohara[38]全脑ROI/手动选择脑回内和脑回间U型纤维从各个方向汇聚到白质脊的交界处,构成了“金字塔形交叉”//
Oishi[39]全脑ROI/自动选择SFG-IFG,MFG-PrCG,PrCG-PoCG,psaf4/
Zhang[40]全脑ROI/自动选择SFG-IFG,MFG-PrCG,PrCG-PoCG,SPG-SMG,SPG-PoCG,SPG-AG,SPG-PrCu,SPG-SOG,SPG-MOG,CG-SFG,CG-PrCu,SFG-MFG,SFG-PrCG,MFG-IFG,IFG-PrCG,PoCG-SMG,AG-MOG,AG-SMG,Cu-LG,Cu-SOG,Cu-MOG,FuG-IOG,FuG-MOG,SOG-MOG,IOG-MOG,STG-MTG,STG-SMG,ITG-MTG,LFOG-MFOG29/
Pardo[41]全脑ROI/自动选择研究其SWM束的变异性80/
Ouyang[42]全脑ROI/自动选择没有特定的束,短关联纤维根据它们连接的两个相邻回进行分组//
Movahedian[43]初级和次级视觉皮层区域ROI/自动选择初级和次级视觉皮层区域的短关联纤维束连接//
Vergani[44]辅助运动区ROI/半自动选择SMA-PrCG,SMA-CG2/
Magro[45]中央前回和中央后回ROI/半自动选择中央前回和中央后回9条纤维束9/
Guevara[47]全脑流线标记/几何距离在中央沟和颞上沟发现了不同人群的纤维组织的变异性//
Vindas[48]全脑流线标记/几何距离所提出的方法在两个数据集中都发现了更多的SWM纤维束//
Zhang[13]中央沟、中央前沟、中央后沟、颞上沟、额下沟和顶内沟流线标记/聚类三种数据类型共有:SFG-MFG,MFG-IFG,PrCG-PoCG,SPG-IFG,PoCG-SPG;DSI:MFG-IPL,SFG-IPL,MFG-SMG,IFG-MTG,PoCG-IPL,SPG-SMG,SMG-MTG,MTG-ITG,IPL-MOG,SFG-SPG,MFG-MTG,IFG-SPG,PrCG-SPG,SPG-IPL,SPG-SOG,SPG-MTG,STG-MTG;
HARDI:SPG-SMG,MFG-MTG,SFG-IFG,SOG-MOG,MFG-PrCG,PoCG-SMG,SPG-MTG,STG-MTG,SPG-IPL,SMG-PrCG,IPL-SMG,IPL-MTG;
DTI:SFG-IFG,MFG-PrCG,IFG-PrCG,SMG-MTG,PrCG-SPG,SFG-PrCG,SFG-PoCG,SFG-SPG,PrCG-MTG,SPG-SOG,IPL-MTG,IFG-STG,PoCG-IPL,PrCG-IPL,PoCG-IPL,IPL-MOG,SMG-MOG,STG-SMG
//
Guevara[49]全脑流线标记/聚类左半球与右半球一致:SFG-IFG(ant,mid,post),SFG-MFG(ant,mid,post),MFG-IFG,MFG(mid,mid2,post,post2),IFG-Ins,IFG(post,inf),LFOG(inf,sup),MFOG,MFOG-CG,SFG-CG(mid),MFG-PrCG(sup,mid),PrCG-PoCG(sup,inf),PrCG-Ins,PrCG-SMG,PaCG-PrCu,PoCG-SMG,SMG,SPG,AG(sup,inf),STG-AG,MTG-AG,STG(post),MTG-Ins,STG-Ins,ITG-MOG,Cu,Cu-Li,LG,FuG(ant,mid,post),PrCu-CG,PrCu-SFG,CG(ant,mid,post)94/
Román[50]全脑流线标记/聚类两半球共有:SPL_SPL_0i,PrCG_SFG_0i,PoCG_PrCG_0-3i,Op_SFG_0i,CMFG_PrCG_0-1i,MTG_MTG_0-1i,PrCG_SMG_0-1i,CMFG_CMFG_0i,FuG_ITG_0i,IPL_SPL_0i,MTG_STG_0i,LorFG_LorFG_0i,CMFG_Op_0i,RMFG_SFG_0-1i,Tr_SFG_0i,SMG_SMG_0-2i,RMFG_RMFG_0-1i,PoCG_SMG_0i,FuG_FuG_0i,STG_STG_0i,Tr_RMFG_0i,LOG_LOG_0-1i,
左半球:ITG_ITG_0-1l,SFG_SFG_0l,FuG_FuG_1l,PrCG_PrCG_0l,STG_STG_1l,Cu_LG_0l,PrCu_PrCu_0l,MTG_MTG_1l,LOG_LOG_2l,PrCG_Ins_0l
右半球:Tr_Tr_0r,Tr_Ins_0r,MTG_MTG_0r,SFG_SFG_1-2r,RMFG_SFG_0r,RMFG_RMFG_0-1r,PoCG_PoCG_1r,PoCG_PrCG_1r,SPL_SPL_0r,PrCu_PrCu_0r,IPL_LOG_0r,IPL_IPL_0r,LoFG_LoFG_1r,Tr_SFG_1r
左:44;
右:49
/
Zhang[52]全脑流线标记/聚类198短纤维簇连接:颞叶、顶叶-颞叶、顶叶-枕叶、顶叶、枕颞叶、枕叶、额叶-顶叶和额叶区域198/
Pron[53]中央沟流线标记/聚类左半球五条U型纤维连接中央前回和中央后回左:5/
Pron[54]中央沟流线标记/聚类左右半球各有五条U型纤维连接中央前回和中央后回左:5;右:5/
Zhang[15]全脑流线标记/深度
学习
198短纤维簇连接:颞叶、顶叶-颞叶、顶叶-枕叶、顶叶、枕颞叶、枕叶、额叶-顶叶和额叶区域19898.42
Xue[55]全脑流线标记/深度
学习
198短纤维簇连接:颞叶、顶叶-颞叶、顶叶-枕叶、顶叶、枕颞叶、枕叶、额叶-顶叶和额叶区域19896.79
Guevara[56]全脑ROI选择和聚
类相结合
两半球共有:CACG-PrCu_0,CMFG-PrCG_0-1,CMFG-RMFG_0,CMFG-SFG_0,IC-PrCu_0,IPL-ITG_0,IPL-MTG_0,IPL-SMG_0,IPL-SPL_0,LOFG-RMFG_0-1,LOFG-STG_0,MOFG-STG_0,MTG-SMG_0,MTG-STG_0,Op-Ins_0,Op-PrCG_0,Op-SFG_0,Or-Ins_0,PoCiG-PrCu_1,PoCiG-RACG_0,PoCG-PrCG_0-2,PoCG-SMG_0,PrCG-Ins_0,PrCG-SMG_0,RMFG-SFG_0-1,SMG-Ins_0,SPL-SMG_0,STG-TTG_0,Tr-Ins_0,Tr-SFG_0
左半球:CMFG-Op_0,CMFG-PoCG_0,Fu-LOG_0,IPL-LOG_1,IPL-SPL_1,ITG-MTG_0,LOFG-Or_0,PoCG-Ins_0,PoCiG-PrCu_0,PoCiG-SFG_0,PoCG-PrCG_3,PoCG-SMG_1,PrCG-SFG_0,RACG-SFG_1,STG-Ins_0
右半球:CACG-PoCiG_0,CMFG-SFG_1,Cu-LG_0,Fu-LOG_1,IPL-LOG_0,ITG-MTG_1-2,LOFG-MOFG_0,LOG-SPL_0,Op-Tr_0,PoCiG-PrCu_2,PoCG-SPL_0,PrCG-SPL_0,RACG-SFG_0
100/
Román[57]全脑ROI选择和聚
类相结合
图谱由整个大脑的525束短关联纤维组成,其中384束连接不同ROI部分,141束连接相同ROI部分525/

新窗口打开| 下载CSV


3 SWM纤维束图谱的构建

人脑图谱为研究者提供了详细的大脑结构和功能分布图,使得研究者能够更准确地定位和分析不同脑区的结构和功能特性[58].SWM脑图谱是一种新颖的脑图谱,它对于研究SWM的微观结构和疾病诊断有着重要意义,其构建流程如图3所示.

图3

图3   SWM纤维束图谱构建流程. (a)预处理:去噪和去除吉布斯环伪影,头动校正和涡流校正,偏置场校正,配准到标准空间;(b)全脑纤维束追踪:确定性追踪算法或概率性追踪算法;(c)全脑纤维束滤波:纤维长度滤波、纤维平滑滤波、DWM束滤波;(d) SWM纤维束聚类:使用不同聚类方法进行SWM纤维束聚类,通过不同皮质分区进行标记;(e) SWM纤维束图谱

Fig. 3   SWM fiber tract atlas construction process. (a) Preprocessing: denoising and removal of Gibbs ring artifacts, head motion correction and eddy current correction, bias field correction, alignment to standard space; (b) whole brain tractography: deterministic tractography algorithm or probabilistic tractography algorithm; (c) whole brain fiber tract filtering: fiber tract length filtering, fiber tract smoothing filtering, DWM tract filtering; (d) SWM fiber tract clustering: SWM fiber tract clustering using different clustering methods, labeling by different cortical partitions; (e) SWM fiber tract atlas


Guevara等人[49]首次在构建DWM脑图谱时涉及SWM脑图谱,他们使用凝聚平均链接层次聚类和纤维欧几里得距离测量来对整个大脑中的短关联纤维进行分割,最终生成左半球47个SWM束的图谱,然后根据连接区域的功能手动标记这些图谱.Román等人[50]同样使用分层聚类的方法和欧几里得距离测量对整个大脑纤维束进行分割以创建图谱,与Guevara等人的工作不同的是,该研究专注于SWM,获得的SWM图谱中左半球有44个束,右半球有49个束,其中33个束分布在两个半球.Guevara等人[56]在聚类方法的基础上引入自动选取ROI算法,通过这种混合的方法以确定跨受试者的可重复、定义明确的束,最终创建了一个包含100个可重复束的SWM图谱,其中35个是两个半球共有的.Zhang等人[52]为了创建一个精细的全脑纤维束图谱,通过群组纤维束配准和谱聚类方法,将全脑纤维束分割成多个纤维聚类,最终创建出一个包括58个DWM纤维束和198个短程和中程的SWM纤维束图谱,并且通过不同类型的受试者进行了验证,证明了该图谱的可重复性.Román等人[57]在先前工作的基础上,引入自动选取ROI的方法,与聚类方法相结合,最终创建的SWM图谱由整个大脑的525束短关联纤维组成,其中384束连接不同ROI对,141束连接相同ROI的部分.5种SWM纤维束图谱的构建方法详细对比如表2所示.

表2   SWM纤维束图谱构建方法对比

Table 2  Comparison of SWM fiber tract atlas construction methods

第一作者图谱构成构建数据测试数据纤维束追踪方法概率性/确定性追踪构建方法
Guevara[49]
36个DWM束,94个SWM束12 NMR
20 HARDI
Q-ball+正则化
粒子轨迹
确定性
层次聚类
Román[50]
93个SWM束
74 CONNECT/Archi
78 HARDI
Q-ball+正则化
粒子轨迹
确定性
层次聚类
Zhang[52]

58 DWM束,198个SWM束
100名健康受试者

584名患有多
种健康状况的
受试者
双张量无迹
卡尔曼滤波
确定性

谱聚类

Guevara[56]
100个SWM束
79 CONNECT/Archi
26 HARDI
Q-ball+正则化
粒子轨迹
确定性
自动ROI选择+层次聚类
Román[57]

525个SWM束

100 HCP

79 HARDI

CSD+iFOD2

概率性

自动ROI选择+FFClust聚类+层次聚类

新窗口打开| 下载CSV


4 总结与展望

本文对基于dMRI的SWM纤维束研究进行了广泛的调研,从SWM纤维束追踪技术,SWM纤维束分割方法,SWM纤维束脑图谱的构建等方面,总结了SWM纤维束成像与分析方面的研究进展.通过全面调研发现SWM纤维束成像方法的研究侧重点已经发生改变,从原来使用DWM纤维束成像方法逐渐变为针对于SWM的特点设计新颖的追踪方法.SWM纤维束分割的方法不再是手动选取ROI进行分割,而是逐渐变为自动选取ROI或者使用无监督聚类的方法进行SWM纤维束分割,近年来深度学习的方法也逐渐应用于SWM纤维束的分割.在此基础上,SWM脑图谱构建也更加细化,各ROI区域的连接被深入研究,分割出的簇越来越多.

由于SWM体积小,高度弯曲,个体间皮层折叠模式的高度变异性使得SWM成像面临巨大挑战,同时对后续的SWM纤维束分割造成影响.高质量的SWM纤维束追踪技术以及准确的SWM分割方法对于神经系统疾病的诊断与治疗具有十分重要的意义,近年来,SWM纤维束微结构成像的研究已经成为一个热点问题.考虑到目前SWM纤维束成像研究中的不足,未来该领域的研究难点主要有以下几个:

(1)由于SWM结构的复杂性,现有的成像方法不能将所有的SWM区域准确的重建与追踪,而且现有的成像方法都是使用DWM成像方法或者基于DWM成像方法进行改进的,这类方法虽然在成像质量上有所提升,但是其准确率依然不高.因此需要针对于SWM的结构特点,设计出新颖的成像方法.

(2)传统的SWM纤维束分割方法依赖于手动选取ROI,这无疑增加了时间成本,并且需要经验丰富的解剖学专家.自动的SWM纤维束分割方法已经成为主流,基于深度学习的SWM纤维束分割方法并不多见,未来可以继续挖掘深度学习在SWM纤维束分割上的应用.

(3)现有的SWM纤维束分割方法都是通过输入纤维束流线的数据进行分割,没有一种方法通过输入DWI数据或者计算出的纤维方向分布数据进行SWM纤维束的分割.在DWM纤维束分割领域,直接分割表现出有前途的分割性能,未来SWM纤维束的直接分割也将成为热点研究.

未来的研究主要专注于两个方面:第一,SWM纤维追踪技术的研究;第二,基于深度学习的SWM纤维束分割.当前,SWM纤维追踪技术还在起步阶段,但其准确性对于提取解剖纤维束和构建SWM纤维束图谱至关重要.因此,开发一种新颖的全脑SWM纤维追踪技术显得尤为迫切.SWM纤维追踪中的高度弯曲偏差和回旋偏差是该技术发展的关键挑战.未来的研究将专注于解决这些高度弯曲偏差问题,并设计出一种全新的SWM纤维追踪技术.基于深度学习的SWM纤维束分割仍然需要被挖掘,相较于手动分割,其中的评价指标也可以更科学客观的评价分割方法的性能,未来的研究将专注于开发更先进的深度学习方法来进行SWM纤维束分割.

利益冲突

附件材料附录

表A1   中英文全称及对应缩写表

Table A1  Chinese and English full names for corresponding abbreviations

缩写英文全称中文全称
PrCGprecentral gyrus中央前回
PoCGpostcentral gyrus中央后回
SFGsuperior frontal gyrus额上回
MFGmiddle frontal gyrus额中回
IFGinferior frontal gyrus额下回
FOPfronto-orbitopolar tract额眶极束
FMTfronto-marginal tract额叶边缘束
FSLfrontal superior longitudinal tract额叶上纵束
FILfrontal inferior longitudinal tract额叶下纵束
Insinsular脑岛
Ororbital眶部
Trtriangular三角部
Opopercular岛盖部
SuCGsub-central gyrus亚中央回
SMGsupramarginal gyrus缘上回
SPLsuperior parietal lobule顶上小叶
IPLinferior parietal lobule顶下小叶
AGangular gyrus角回
PrCuprecuneus楔前叶
psafparietal short association fibers顶叶短关联纤维
SPGsuperior parietal gyrus顶上回
SOGsuperior occipital gyrus枕上回
MOGmedial occipital gyrus枕中回
CGcingulate gyrus扣带回
SFGsuperior frontal gyrus额上回
MFGmedial frontal gyrus额中回
IFGinferior frontal gyrus额下回
Cucuneus楔叶
LGlingual gyrus舌回
FuGfusigorm gyrus枕颞外侧回
IOGinferior occipital gyrus枕下回
STGsuperior temporal gyrus颞上回
MTGmiddle temporal gyrus颞中回
ITGinferior temporal gyrus额下回
LFOGlateral fronto-orbital gyrus内侧眶额回
MFOGmedial fronto-orbital gyrus外侧眶额回
SMAsupplementary motor area辅助运动区
CMFGcaudal middle frontal gyrus额中回尾部
LoFGlateral orbito frontal gyrus额眶外侧回
RMFGrostral middle frontal gyrus额中回头部
LOGlateral occipital gyrus枕外侧回
CACGcaudal anterior cingulate gyrus尾侧前扣带回
ICisthmus cingulate扣带峡部
MOFGmedial orbito frontal gyrus额眶内侧回
RACGrostal anterior cingulate gyrus前扣带回头部
PoCiGposterior cingulate gyrus后扣带回
TTGtransverse temporal gyrus颞横回

新窗口打开| 下载CSV


参考文献

VERGANI F, MAHMOOD S, MORRIS C M, et al.

Intralobar fibres of the occipital lobe: a post mortem dissection study

[J]. Cortex, 2014, 56: 145-156.

DOI:10.1016/j.cortex.2014.03.002      PMID:24768339      [本文引用: 1]

The atlas by Heinrich Sachs (1892) provided an accurate description of the intralobar fibres of the occipital lobe, with a detailed representation of the short associative tracts connecting different parts of the lobe. Little attention has been paid to the work of Sachs since its publication. In this study, we present the results of the dissection of three hemispheres, performed according to the Klingler technique (1935). Our anatomical findings are then compared to the original description of the occipital fibres anatomy as detailed by Sachs.Three hemispheres were dissected according to Klingler's technique (1935). Specimens were fixed in 10% formalin and frozen at -15 °C for two weeks. After defreezing, dissection of the white matter fibres was performed with blunt dissectors. Coronal sections were obtained according to the cuts originally described by Sachs. In addition, medial to lateral and lateral to medial dissection of the white matter of the occipital lobe was also performed.A network of short association fibres was demonstrated in the occipital lobe, comprising intralobar association fibres and U-shaped fibres, which are connecting neighbouring gyri. Lateral to the ventricles, longitudinal fibres of the stratum sagittale were also identified that are arranged as external and internal layers. Fibres of the forceps major were also found to be in direct contact with the ventricular walls. We were able to replicate all tracts originally described by Sachs. In addition, a previously unrecognised tract, connecting the cuneus to the lingual gyrus, was identified. This tract corresponds to the "sledge runner", described in tractography studies.The occipital lobe shows a rich network of intralobar fibres, arranged around the ventricular wall. Good concordance was observed between the Klingler dissection technique and the histological preparations of Sachs.Copyright © 2014 Elsevier Ltd. All rights reserved.

REVELEY C, SETH A K, PIERPAOLI C, et al.

Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography

[J]. Proc Natl Acad Sci, 2015, 112(21): E2820-E2828.

[本文引用: 1]

VAN DYKEN P C, KHAN A R, PALANIYAPPAN L.

Imaging of the superficial white matter in health and disease

[J]. Imaging Neurosci, 2024, 2: 1-35.

[本文引用: 1]

KIRILINA E, HELBLING S, MORAWSKI M, et al.

Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping

[J]. Sci Adv, 2020, 6(41): eaaz9281.

[本文引用: 1]

ZHU Y, WANG Y.

Brain fiber structure estimation based on principal component analysis and RINLM filter

[J]. Med Biol Eng Comput, 2024, 62(3): 751-771.

DOI:10.1007/s11517-023-02972-2      PMID:37996628      [本文引用: 1]

Diffusion magnetic resonance imaging is a technique for non-invasive detection of microstructure in the white matter of the human brain, which is widely used in neuroscience research of the brain. However, diffusion-weighted images(DWI) are sensitive to noise, which affects the subsequent reconstruction of fiber orientation direction, microstructural parameter estimation and fiber tracking. In order to better eliminate the noise in diffusion-weighted images, this study proposes a noise reduction method combining Marchenko-Pastur principal component analysis(MPPCA) and rotation-invariant non-local means filter(RINLM) to further remove residual noise and preserve the image texture detail information. In this study, the algorithm is applied to the fiber structure and the prevailing microstructural models within the human brain voxels based on simulated and real human brain datasets. Experimental comparisons between the proposed method and the state-of-the-art methods are performed in single-fiber, multi-fiber, crossed and curved-fiber regions as well as in different microstructure estimation models. Results demonstrated the superior performance of the proposed method in denoising DWI data, which can reduce the angular error in fiber orientation reconstruction to obtain more valid fiber structure estimation and enable more complete fiber tracking trajectories with higher coverage. Meanwhile, the method reduces the estimation errors of various white matter microstructural parameters and verifies the performance of the method in white matter microstructure estimation.© 2023. International Federation for Medical and Biological Engineering.

CONTURO T E, LORI N F, CULL T S, et al.

Tracking neuronal fiber pathways in the living human brain

[J]. Proc Natl Acad Sci, 1999, 96(18): 10422-10427.

[本文引用: 1]

CATANI M, JONES D K, DONATO R, et al.

Occipito-temporal connections in the human brain

[J]. Brain, 2003, 126(9): 2093-2107.

[本文引用: 3]

GUEVARA P, DUCLAP D, POUPON C, et al.

Segmentation of short association bundles in massive tractography datasets using a multi-subject bundle atlas

[C]// Iberoamerican Congress on Pattern Recognition, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 701-708.

[本文引用: 1]

XUE T, ZHANG F, ZHANG C, et al.

Supwma: consistent and efficient tractography parcellation of superficial white matter with deep learning

[C]// International Symposium on Biomedical Imaging, ITC Royal Bengal, Kolkata, India: IEEE, 2022: 1-5.

[本文引用: 1]

FENG Y J, WANG Z J, ZHANG G J, et al.

Global white matter tractography using swarm optimization

[J]. J Image Graph, 2012, 17(10): 1312-1318.

[本文引用: 1]

冯远静, 王哲进, 张贵军, .

全局脑白质纤维群智能跟踪算法

[J]. 中国图象图形学报, 2012, 17(10): 1312-1318.

[本文引用: 1]

张军. 基于邻域字典基模型的脑纤维流线微分方程跟踪算法[D]. 杭州: 浙江工业大学, 2017.

[本文引用: 1]

YUE Q, WANG Y J.

A fiber tracking algorithm based on non-local constrained spherical deconvolution

[J]. Chinese J Magn Reson, 2020, 37(4): 422-433.

[本文引用: 1]

岳晴, 王远军.

基于非局部约束球面反卷积模型的纤维追踪算法

[J]. 波谱学杂志, 2020, 37(4): 422-433.

DOI:10.11938/cjmr20192798      [本文引用: 1]

基于扩散磁共振成像的纤维追踪技术为非侵入性观测脑白质结构提供了有力的手段,约束球面反卷积作为一种多纤维追踪模型,能够对体素内纤维的方向信息进行建模,进而实现脑纤维的重构.针对约束球面反卷积模型的不适定性以及细节信息丢失问题,本文在约束球面反卷积的基础上,结合邻域信息和分数阶正则化,提出了一种基于非局部约束球面反卷积模型的确定型纤维追踪算法,分数阶的非局部特性使得纤维方向分布模型估计的误差更小,而邻域信息的引入保证了空间一致性,可以减少噪声的影响.分别利用模拟数据、人脑实际数据对本文算法及基于约束球面反卷积的确定型纤维追踪算法作对比实验,结果表明,利用本文算法追踪的纤维不仅整体视觉效果上较整洁,而且对交叉纤维的重建结果更完整准确.

ZHANG T, CHEN H, GUO L, et al.

Characterization of U-shape streamline fibers: methods and applications

[J]. Med Image Anal, 2014, 18(5): 795-807.

DOI:10.1016/j.media.2014.04.005      PMID:24835185      [本文引用: 3]

Diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI), and diffusion spectrum imaging (DSI) have been widely used in the neuroimaging field to examine the macro-scale fiber connection patterns in the cerebral cortex. However, the topographic and geometric relationships between diffusion imaging derived streamline fiber connection patterns and cortical folding patterns remain largely unknown. This paper specifically identifies and characterizes the U-shapes of diffusion imaging derived streamline fibers via a novel fiber clustering framework and examines their co-localization patterns with cortical sulci based on DTI, HARDI, and DSI datasets of human, chimpanzee and macaque brains. We verified the presence of these U-shaped streamline fibers that connect neighboring gyri by coursing around cortical sulci such as the central sulcus, pre-central sulcus, post-central sulcus, superior temporal sulcus, inferior frontal sulcus, and intra-parietal sulcus. This study also verified the existence of U-shape fibers across data modalities (DTI/HARDI/DSI) and primate species (macaque, chimpanzee and human), and suggests that the common pattern of U-shape fibers coursing around sulci is evolutionarily-preserved in cortical architectures.Copyright © 2014 Elsevier B.V. All rights reserved.

WU Y, SUN D, WANG Y, et al.

Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection

[J]. Brain Res, 2016, 1646: 152-159.

DOI:S0006-8993(16)30408-5      PMID:27235864      [本文引用: 3]

The temporo-parieto-occipital (TPO) junction plays a unique role in human high-level neurological functions. Long-range fibers from and to this area have been described in detail but little is known about short TPO tracts mediating local connectivity. In this study, we performed high angular diffusion spectrum imaging (DSI) analyses to visualize the short TPO connections in the human brain. Fiber tracking was conducted on a subject-specific approach (10 subjects) and a template of 90 subjects (NTU-90 Atlas). Three tracts were identified: posterior segment of the superior longitudinal fasciculus (SLF-V), connecting the posterior part of the middle and inferior temporal gyri with the angular gyrus and supramarginal gyrus, vertical occipital fasciculus (VOF), connecting the inferior parietal with the lower temporal and occipital lobe, and a novel temporo-parietal (TP) connection, interconnecting the inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, and inferior occipital lobe with the superior parietal lobe. These studies were complemented by fiber dissection techniques. It is the first study that demonstrated the trajectory and connectivity of the VOF using fiber dissection, as well as displayed the spatial relationship of the SLF-V with the cortex and the adjacent fiber bundles on one dissecting hemisphere. By providing a more accurate and detailed description of the local connectivity of the TPO junction, our findings help to develop new insights into its functional role in the human brain.Copyright © 2016 Elsevier B.V. All rights reserved.

ZHANG D, ZONG F, ZHANG Q, et al.

Anat-SFSeg: Anatomically-guided superficial fiber segmentation with point-cloud deep learning

[J]. Med Image Anal, 2024, 95: 103165.

[本文引用: 3]

LI M, HE J Z, FENG Y J.

Research progress of neural fiber tracking

[J]. J Image Graph, 2020, 25(8): 1513-1528.

[本文引用: 1]

李茂, 何建忠, 冯远静.

神经纤维跟踪算法研究进展

[J]. 中国图象图形学报, 2020, 25(8): 1513-1528.

[本文引用: 1]

NIE X, RUAN J, OTADUY M C G, et al.

Surface-based probabilistic fiber tracking in superficial white matter

[J]. IEEE Trans Med Imaging, 2024, 43(3): 1113-1124.

[本文引用: 2]

GUEVARA M, GUEVARA P, ROMÁN C, et al.

Superficial white matter: A review on the dMRI analysis methods and applications

[J]. NeuroImage, 2020, 212: 116673.

[本文引用: 1]

UĞURBIL K, XU J, AUERBACH E J, et al.

Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

[J]. NeuroImage, 2013, 80: 80-104.

DOI:10.1016/j.neuroimage.2013.05.012      PMID:23702417      [本文引用: 1]

The Human Connectome Project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce 'functional connectivity'; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3T, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 s for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total dMRI data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 T magnetic field are also presented, targeting higher spatial resolution, enhanced specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields, and reduced power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure.Copyright © 2013 Elsevier Inc. All rights reserved.

YE W H, WANG Y J.

Review of neural fiber tracking with diffusion magnetic resonance imaging

[J]. J Chinese Comput Sys, 2022, 43(7): 1458-1463.

[本文引用: 1]

叶伟红, 王远军.

扩散磁共振图像的神经纤维追踪算法研究综述

[J]. 小型微型计算机系统, 2022, 43(7): 1458-1463.

[本文引用: 1]

扩散磁共振成像是目前唯一非侵入性研究脑神经纤维束微结构的技术,神经纤维追踪技术是显示神经纤维的关键步骤.本文综述了两大类的神经纤维追踪算法的研究进展,即:局部型追踪方法和全局型追踪方法,阐明各个追踪算法的优点以及存在的局限性,然后在此基础上介绍了在神经纤维追踪过程中能做出优化的具体方面,包括局部纤维方向建模、张量插值、种子点的选取、传播方向以及终止准则等,最后对神经纤维追踪算法的未来发展趋势进行展望.

TOURNIER J D, CALAMANTE F, KING M D, et al.

Limitations and requirements of diffusion tensor fiber tracking: an assessment using simulations

[J]. Magn Reson Med, 2002, 47(4): 701-708.

PMID:11948731      [本文引用: 1]

Diffusion tensor fiber tracking potentially can give information about in vivo brain connectivity. However, this technique is difficult to validate due to the lack of a gold standard. Fiber tracking reliability will depend on the quality of the data and on the robustness of the algorithms used. Information about the effects of various anatomical and image acquisition parameters on fiber tracking reliability may be used in the design of imaging sequences and of tracking algorithms. In this study, tracking was performed on two different simulated models to study the effects on tracking quality of SNR, anisotropy, curvature, fiber cross-section, background anisotropy, step size, and interpolation. Tracking was also performed on volunteer data to assess the relevance of the simulations to real data. Our results show that, in general, tracking with high SNR and high anisotropy using interpolation and a low step size gives the most reliable results. Partial volume effects are shown to have a detrimental effect when the background is anisotropic and when tracking narrow fibers. The results derived from real data show similar trends and thus support the findings of the simulations. These simulations may therefore help to determine which structures can be tracked for a given image quality.Copyright 2002 Wiley-Liss, Inc.

AYDOGAN D B, SHI Y.

Parallel transport tractography

[J]. IEEE Trans Med Imaging, 2020, 40(2): 635-647.

[本文引用: 1]

GAHM J K, SHI Y.

Surface-based tracking of U-fibers in the superficial white matter

[C]// Medical Image Computing and Computer-assisted Intervention, Shenzhen, China: Springer International Publishing, 2019: 538-546.

[本文引用: 1]

SCHILLING K, GAO Y, JANVE V, et al.

Confirmation of a gyral bias in diffusion MRI fiber tractography

[J]. Hum Brain Mapp, 2018, 39(3): 1449-1466.

DOI:10.1002/hbm.23936      PMID:29266522      [本文引用: 1]

Diffusion MRI fiber tractography has been increasingly used to map the structural connectivity of the human brain. However, this technique is not without limitations; for example, there is a growing concern over anatomically correlated bias in tractography findings. In this study, we demonstrate that there is a bias for fiber tracking algorithms to terminate preferentially on gyral crowns, rather than the banks of sulci. We investigate this issue by comparing diffusion MRI (dMRI) tractography with equivalent measures made on myelin-stained histological sections. We begin by investigating the orientation and trajectories of axons near the white matter/gray matter boundary, and the density of axons entering the cortex at different locations along gyral blades. These results are compared with dMRI orientations and tract densities at the same locations, where we find a significant gyral bias in many gyral blades across the brain. This effect is shown for a range of tracking algorithms, both deterministic and probabilistic, and multiple diffusion models, including the diffusion tensor and a high angular resolution diffusion imaging technique. Additionally, the gyral bias occurs for a range of diffusion weightings, and even for very high-resolution datasets. The bias could significantly affect connectivity results using the current generation of tracking algorithms.© 2017 Wiley Periodicals, Inc.

SOTIROPOULOS S N, HERNÁNDEZ-FERNÁNDEZ M, VU A T, et al.

Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project

[J]. NeuroImage, 2016, 134: 396-409.

DOI:S1053-8119(16)30047-7      PMID:27071694      [本文引用: 1]

Determining the acquisition parameters in diffusion magnetic resonance imaging (dMRI) is governed by a series of trade-offs. Images of lower resolution have less spatial specificity but higher signal to noise ratio (SNR). At the same time higher angular contrast, important for resolving complex fibre patterns, also yields lower SNR. Considering these trade-offs, the Human Connectome Project (HCP) acquires high quality dMRI data for the same subjects at different field strengths (3T and 7T), which are publically released. Due to differences in the signal behavior and in the underlying scanner hardware, the HCP 3T and 7T data have complementary features in k- and q-space. The 3T dMRI has higher angular contrast and resolution, while the 7T dMRI has higher spatial resolution. Given the availability of these datasets, we explore the idea of fusing them together with the aim of combining their benefits. We extend a previously proposed data-fusion framework and apply it to integrate both datasets from the same subject into a single joint analysis. We use a generative model for performing parametric spherical deconvolution and estimate fibre orientations by simultaneously using data acquired under different protocols. We illustrate unique features from each dataset and how they are retained after fusion. We further show that this allows us to complement benefits and improve brain connectivity analysis compared to analyzing each of the datasets individually.Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

SONG A W, CHANG H C, PETTY C, et al.

Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution

[J]. Brain Connect, 2014, 4(9): 636-640.

DOI:10.1089/brain.2014.0270      PMID:25264168      [本文引用: 1]

Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.

ST-ONGE E, DADUCCI A, GIRARD G, et al.

Surface-enhanced tractography (SET)

[J]. NeuroImage, 2018, 169: 524-539.

DOI:S1053-8119(17)31058-3      PMID:29258891      [本文引用: 1]

In this work, we exploit the T1 weighted image in conjunction with cortical surface boundary to improve the precision of tractography under the cortex. We show that utilizing the cortical interface and a surface flow, to model the superficial white matter streamlines, enhance and improve tractography trajectory near the cortex. Our novel surface-enhanced tractography reduces the gyral bias, the length bias and the amount of false positive streamlines produced by tractography. This method improves the reproducibility and the cortical surface coverage of tractograms which are crucial for connectomics studies. The usage of cortical surfaces, extracted from the standardly acquired 1 mm isotropic T1, is a straightforward and effective way to improve existing tractography processing pipelines and structural connectivity studies.Copyright © 2017 Elsevier Inc. All rights reserved.

BASTIANI M, COTTAAR M, DIKRANIAN K, et al.

Improved tractography using asymmetric fibre orientation distributions

[J]. NeuroImage, 2017, 158: 205-218.

DOI:S1053-8119(17)30521-9      PMID:28669902      [本文引用: 1]

Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion measurements are antipodally symmetric (diffusion along x and -x are equal), whereas the distribution of fibre orientations within a voxel is generally not symmetric. Therefore, different sub-voxel patterns such as crossing, fanning, or sharp bending, cannot be distinguished by fitting a voxel-wise model to the signal. However, asymmetric fibre patterns can potentially be distinguished once spatial information from neighbouring voxels is taken into account. We propose a neighbourhood-constrained spherical deconvolution approach that is capable of inferring asymmetric fibre orientation distributions (A-fods). Importantly, we further design and implement a tractography algorithm that utilises the estimated A-fods, since the commonly used streamline tractography paradigm cannot directly take advantage of the new information. We assess performance using ultra-high resolution histology data where we can compare true orientation distributions against sub-voxel fibre patterns estimated from down-sampled data. Finally, we explore the benefits of A-fods-based tractography using in vivo data by evaluating agreement of tractography predictions with connectivity estimates made using different in-vivo modalities. The proposed approach can reliably estimate complex fibre patterns such as sharp bending and fanning, which voxel-wise approaches cannot estimate. Moreover, histology-based and in-vivo results show that the new framework allows more accurate tractography and reconstruction of maps quantifying (symmetric and asymmetric) fibre complexity.Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

WU Y, HONG Y, FENG Y, et al.

Mitigating gyral bias in cortical tractography via asymmetric fiber orientation distributions

[J]. Med Image Anal, 2020, 59: 101543.

[本文引用: 1]

SHASTIN D, GENC S, PARKER G D, et al.

Surface-based tracking for short association fibre tractography

[J]. NeuroImage, 2022, 260: 119423.

[本文引用: 1]

COTTAAR M, BASTIANI M, BODDU N, et al.

Modelling white matter in gyral blades as a continuous vector field

[J]. NeuroImage, 2021, 227: 117693.

[本文引用: 1]

RHEAULT F, DE BENEDICTIS A, DADUCCI A, et al.

Tractostorm: The what, why, and how of tractography dissection reproducibility

[J]. Hum Brain Mapp, 2020, 41(7): 1859-1874.

DOI:10.1002/hbm.24917      PMID:31925871      [本文引用: 1]

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection." Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real-life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and "virtual dissection" across various laboratories and hospitals. Intra-rater agreement (Dice score) was approximately 0.77, while inter-rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

WAKANA S, JIANG H, NAGAE-POETSCHER L M, et al.

Fiber tract-based atlas of human white matter anatomy

[J]. Radiology, 2004, 230(1): 77-87.

DOI:10.1148/radiol.2301021640      PMID:14645885      [本文引用: 2]

Two- and three-dimensional (3D) white matter atlases were created on the basis of high-spatial-resolution diffusion tensor magnetic resonance (MR) imaging and 3D tract reconstruction. The 3D trajectories of 17 prominent white matter tracts could be reconstructed and depicted. Tracts were superimposed on coregistered anatomic MR images to parcel the white matter. These parcellation maps were then compared with coregistered diffusion tensor imaging color maps to assign visible structures. The results showed (a). which anatomic structures can be identified on diffusion tensor images and (b). where these anatomic units are located at each section level and orientation. The atlas may prove useful for educational and clinical purposes.Copyright RSNA, 2004

CATANI M, DELL’ACQUA F, VERGANI F, et al.

Short frontal lobe connections of the human brain

[J]. Cortex, 2012, 48(2): 273-291.

DOI:10.1016/j.cortex.2011.12.001      PMID:22209688      [本文引用: 2]

Advances in our understanding of sensory-motor integration suggest a unique role of the frontal lobe circuits in cognition and behaviour. Long-range afferent connections convey higher order sensory information to the frontal cortex, which in turn responds to internal and external stimuli with flexible and adaptive behaviour. Long-range connections from and to frontal lobes have been described in detail in monkeys but little is known about short intralobar frontal connections mediating local connectivity in humans. Here we used spherical deconvolution diffusion tractography and post-mortem dissections to visualize the short frontal lobe connections of the human brain. We identified three intralobar tracts connecting: i) posterior Broca's region with supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) (i.e., the frontal 'aslant' tract - FAT); ii) posterior orbitofrontal cortex with anterior polar region (i.e., fronto-orbitopolar tract - FOP); iii) posterior pre-central cortex with anterior prefrontal cortex (i.e., the frontal superior longitudinal - FSL faciculus system). In addition more complex systems of short U-shaped fibres were identified in the regions of the central, pre-central, perinsular and fronto-marginal sulcus (FMS). The connections between Broca and medial frontal areas (i.e. FAT) and those between the hand-knob motor region and post-central gyrus (PoCG) were found left lateralized in a group of twelve healthy right-handed subjects. The existence of these short frontal connections was confirmed using post-mortem blunt dissections. The functional role of these tracts in motor learning, verbal fluency, prospective behaviour, episodic and working memory is discussed. Our study provides a general model for the local connectivity of the frontal lobes that could be used as an anatomical framework for studies on lateralization and future clinical research in neurological and psychiatric disorders.Copyright © 2011 Elsevier Srl. All rights reserved.

ROJKOVA K, VOLLE E, URBANSKI M, et al.

Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study

[J]. Brain Struct Funct, 2016, 221: 1751-1766.

DOI:10.1007/s00429-015-1001-3      PMID:25682261      [本文引用: 2]

In neuroscience, there is a growing consensus that higher cognitive functions may be supported by distributed networks involving different cerebral regions, rather than by single brain areas. Communication within these networks is mediated by white matter tracts and is particularly prominent in the frontal lobes for the control and integration of information. However, the detailed mapping of frontal connections remains incomplete, albeit crucial to an increased understanding of these cognitive functions. Based on 47 high-resolution diffusion-weighted imaging datasets (age range 22-71 years), we built a statistical normative atlas of the frontal lobe connections in stereotaxic space, using state-of-the-art spherical deconvolution tractography. We dissected 55 tracts including U-shaped fibers. We further characterized these tracts by measuring their correlation with age and education level. We reported age-related differences in the microstructural organization of several, specific frontal fiber tracts, but found no correlation with education level. Future voxel-based analyses, such as voxel-based morphometry or tract-based spatial statistics studies, may benefit from our atlas by identifying the tracts and networks involved in frontal functions. Our atlas will also build the capacity of clinicians to further understand the mechanisms involved in brain recovery and plasticity, as well as assist clinicians in the diagnosis of disconnection or abnormality within specific tracts of individual patients with various brain diseases.

BURKS J D, BOETTCHER L B, CONNER A K, et al.

White matter connections of the inferior parietal lobule: a study of surgical anatomy

[J]. Brain Behav, 2017, 7(4): e00640.

[本文引用: 2]

CATANI M, ROBERTSSON N, BEYH A, et al.

Short parietal lobe connections of the human and monkey brain

[J]. Cortex, 2017, 97: 339-357.

DOI:S0010-9452(17)30370-2      PMID:29157936      [本文引用: 2]

The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic of the human species, such as mathematical cognition, semantic and pragmatic aspects of language, and abstract thinking. Despite its importance, a comprehensive comparison of human and simian intraparietal networks is missing. In this study, we used diffusion imaging tractography to reconstruct the major intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain. The largest tract identified in both human and monkey brains is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only. Our findings suggest a consistent pattern of intralobar parietal connections between humans and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans.Copyright © 2017. Published by Elsevier Ltd.

SHINOHARA H, LIU X, NAKAJIMA R, et al.

Pyramid-shape crossings and intercrossing fibers are key elements for construction of the neural network in the superficial white matter of the human cerebrum

[J]. Cereb Cortex, 2020, 30(10): 5218-5228.

DOI:10.1093/cercor/bhaa080      PMID:32324856      [本文引用: 2]

Structural analysis of the superficial white matter is prerequisite for the understanding of highly integrated functions of the human cerebral cortex. However, the principal components, U-fibers, have been regarded as simple wires to connect adjacent gyri (inter-gyral U-fibers) but have never been thought as indispensable elements of anatomical structures to construct the cortical network. Here, we reported such novel structures made of U-fibers. Seven human cerebral hemispheres were treated with Klingler's method and subjected to fiber dissection (FD). Additionally, tractography using diffusion spectrum imaging (DSI) was performed. Our FD and DSI tractography succeeded disclosing a new type of U-fibers that was hidden in and ran along the white matter ridge of a gyral convolution (intra-gyral U-fibers). They were distinct from inter-gyral U-fibers which paved sulcal floors. Both intra- and inter-gyral U-fibers converged from various directions into junctional areas of white matter ridges, organizing novel anatomical structures, "pyramid-shape crossings". U-fibers to form pyramid-shape crossings also render routes for communication between crossings. There were 97 (mean, range 73-148) pyramid-shape crossings per lateral cortical surface. They are key structures to construct the neural network for intricate communications throughout the entire cerebrum. They can be new anatomical landmarks, too, for the segmentation of the cerebral cortex.© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

OISHI K, ZILLES K, AMUNTS K, et al.

Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter

[J]. NeuroImage, 2008, 43(3): 447-457.

DOI:10.1016/j.neuroimage.2008.07.009      PMID:18692144      [本文引用: 2]

Structural delineation and assignment are the fundamental steps in understanding the anatomy of the human brain. The white matter has been structurally defined in the past only at its core regions (deep white matter). However, the most peripheral white matter areas, which are interleaved between the cortex and the deep white matter, have lacked clear anatomical definitions and parcellations. We used axonal fiber alignment information from diffusion tensor imaging (DTI) to delineate the peripheral white matter, and investigated its relationship with the cortex and the deep white matter. Using DTI data from 81 healthy subjects, we identified nine common, blade-like anatomical regions, which were further parcellated into 21 subregions based on the cortical anatomy. Four short association fiber tracts connecting adjacent gyri (U-fibers) were also identified reproducibly among the healthy population. We anticipate that this atlas will be useful resource for atlas-based white matter anatomical studies.

ZHANG Y, ZHANG J, OISHI K, et al.

Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy

[J]. NeuroImage, 2010, 52(4): 1289-1301.

DOI:10.1016/j.neuroimage.2010.05.049      PMID:20570617      [本文引用: 2]

Tractography based on diffusion tensor imaging (DTI) is widely used to quantitatively analyze the status of the white matter anatomy in a tract-specific manner in many types of diseases. This approach, however, involves subjective judgment in the tract-editing process to extract only the tracts of interest. This process, usually performed by manual delineation of regions of interest, is also time-consuming, and certain tracts, especially the short cortico-cortical association fibers, are difficult to reconstruct. In this paper, we propose an automated approach for reconstruction of a large number of white matter tracts. In this approach, existing anatomical knowledge about tract trajectories (called the Template ROI Set or TRS) were stored in our DTI-based brain atlas with 130 three-dimensional anatomical segmentations, which were warped non-linearly to individual DTI data. We examined the degree of matching with manual results for selected fibers. We established 30 TRSs to reconstruct 30 prominent and previously well-described fibers. In addition, TRSs were developed to delineate 29 short association fibers that were found in all normal subjects examined in this paper (N=20). Probabilistic maps of the 59 tract trajectories were created from the normal subjects and were incorporated into our image analysis tool for automated tract-specific quantification.Copyright 2010 Elsevier Inc. All rights reserved.

PARDO E, GUEVARA P, DUCLAP D, et al.

Study of the variability of short association bundles on a HARDI database

[C]// Engineering in Medicine and Biology Society, Osaka, Japan: IEEE, 2013: 77-80.

[本文引用: 2]

OUYANG M, JEON T, MISHRA V, et al.

Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

[C]// International Society for Optical Engineering, San Diego, CA, United States: SPIE, 2016, 9788: 328-334.

[本文引用: 2]

MOVAHEDIAN ATTAR F, KIRILINA E, HAENELT D, et al.

Mapping short association fibers in the early cortical visual processing stream using in vivo diffusion tractography

[J]. Cereb Cortex, 2020, 30(8): 4496-4514.

[本文引用: 2]

VERGANI F, LACERDA L, MARTINO J, et al.

White matter connections of the supplementary motor area in humans

[J]. J Neurol Neurosurg Psychiatry, 2014, 85(12): 1377-1385.

DOI:10.1136/jnnp-2013-307492      PMID:24741063      [本文引用: 2]

The supplementary motor area (SMA) is frequently involved by brain tumours (particularly WHO grade II gliomas). Surgery in this area can be followed by the 'SMA syndrome', characterised by contralateral akinesia and mutism. Knowledge of the connections of the SMA can provide new insights on the genesis of the SMA syndrome, and a better understanding of the challenges related to operating in this region.White matter connections of the SMA were studied with both postmortem dissection and advance diffusion imaging tractography. Postmortem dissections were performed according to the Klingler technique. 12 specimens were fixed in 10% formalin and frozen at -15°C for 2 weeks. After thawing, dissection was performed with blunt dissectors. For diffusion tractography, high-resolution diffusion imaging datasets from 10 adult healthy controls from the Human Connectome Project database were used. Whole brain tractography was performed using a spherical deconvolution approach.Five main connections were identified in both postmortem dissections and tractography reconstructions: (1) U-fibres running in the precentral sulcus, connecting the precentral gyrus and the SMA; (2) U-fibres running in the cingulate sulcus, connecting the SMA with the cingulate gyrus; (3) frontal 'aslant' fascicle, directly connecting the SMA with the pars opercularis of the inferior frontal gyrus; (4) medial fibres connecting the SMA with the striatum; and (5) SMA callosal fibres. Good concordance was observed between postmortem dissections and diffusion tractography.The SMA shows a wide range of white matter connections with motor, language and lymbic areas. Features of the SMA syndrome (akinesia and mutism) can be better understood on the basis of these findings.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

MAGRO E, MOREAU T, SEIZEUR R, et al.

Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

[J]. Neuroradiology, 2012, 54: 1275-1285.

DOI:10.1007/s00234-012-1073-1      PMID:22854806      [本文引用: 2]

Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness.Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness.The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers.These results raise questions about the functional role of these MRI tracks and their relation with laterality.

YANG Z, LI X, ZHOU J, et al.

Functional clustering of whole brain white matter fibers

[J]. J Neurosci Meth, 2020, 335: 108626.

[本文引用: 1]

GUEVARA M, SUN Z Y, GUEVARA P, et al.

Disentangling the variability of the superficial white matter organization using regional-tractogram-based population stratification

[J]. NeuroImage, 2022, 255: 119197.

[本文引用: 2]

VINDAS N, AVILA N L, ZHANG F, et al.

GeoLab: geometry-based tractography parcellation of superficial white matter

[C]// International Symposium on Biomedical Imaging, Cartagena de Indias, Colombia: IEEE, 2023: 1-5.

[本文引用: 2]

GUEVARA P, DUCLAP D, POUPON C, et al.

Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas

[J]. NeuroImage, 2012, 61(4): 1083-1099.

DOI:10.1016/j.neuroimage.2012.02.071      PMID:22414992      [本文引用: 4]

This paper presents a method for automatic segmentation of white matter fiber bundles from massive dMRI tractography datasets. The method is based on a multi-subject bundle atlas derived from a two-level intra-subject and inter-subject clustering strategy. This atlas is a model of the brain white matter organization, computed for a group of subjects, made up of a set of generic fiber bundles that can be detected in most of the population. Each atlas bundle corresponds to several inter-subject clusters manually labeled to account for subdivisions of the underlying pathways often presenting large variability across subjects. An atlas bundle is represented by the multi-subject list of the centroids of all intra-subject clusters in order to get a good sampling of the shape and localization variability. The atlas, composed of 36 known deep white matter bundles and 47 superficial white matter bundles in each hemisphere, was inferred from a first database of 12 brains. It was successfully used to segment the deep white matter bundles in a second database of 20 brains and most of the superficial white matter bundles in 10 subjects of the same database.Copyright © 2012 Elsevier Inc. All rights reserved.

ROMÁN C, GUEVARA M, VALENZUELA R, et al.

Clustering of whole-brain white matter short association bundles using HARDI data

[J]. Front Neuroinform, 2017, 11: 73.

DOI:10.3389/fninf.2017.00073      PMID:29311886      [本文引用: 4]

Human brain connectivity is extremely complex and variable across subjects. While long association and projection bundles are stable and have been deeply studied, short association bundles present higher intersubject variability, and few studies have been carried out to adequately describe the structure, shape, and reproducibility of these bundles. However, their analysis is crucial to understand brain function and better characterize the human connectome. In this study, we propose an automatic method to identify reproducible short association bundles of the superficial white matter, based on intersubject hierarchical clustering. The method is applied to the whole brain and finds representative clusters of similar fibers belonging to a group of subjects, according to a distance metric between fibers. We experimented with both affine and non-linear registrations and, due to better reproducibility, chose the results obtained from non-linear registration. Once the clusters are calculated, our method performs automatic labeling of the most stable connections based on individual cortical parcellations. We compare results between two independent groups of subjects from a HARDI database to generate reproducible connections for the creation of an atlas. To perform a better validation of the results, we used a bagging strategy that uses pairs of groups of 27 subjects from a database of 74 subjects. The result is an atlas with 44 bundles in the left hemisphere and 49 in the right hemisphere, of which 33 bundles are found in both hemispheres. Finally, we use the atlas to automatically segment 78 new subjects from a different HARDI database and to analyze stability and lateralization results.

DESIKAN R S, SÉGONNE F, FISCHL B, et al.

An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest

[J]. NeuroImage, 2006, 31(3): 968-980.

DOI:10.1016/j.neuroimage.2006.01.021      PMID:16530430      [本文引用: 1]

In this study, we have assessed the validity and reliability of an automated labeling system that we have developed for subdividing the human cerebral cortex on magnetic resonance images into gyral based regions of interest (ROIs). Using a dataset of 40 MRI scans we manually identified 34 cortical ROIs in each of the individual hemispheres. This information was then encoded in the form of an atlas that was utilized to automatically label ROIs. To examine the validity, as well as the intra- and inter-rater reliability of the automated system, we used both intraclass correlation coefficients (ICC), and a new method known as mean distance maps, to assess the degree of mismatch between the manual and the automated sets of ROIs. When compared with the manual ROIs, the automated ROIs were highly accurate, with an average ICC of 0.835 across all of the ROIs, and a mean distance error of less than 1 mm. Intra- and inter-rater comparisons yielded little to no difference between the sets of ROIs. These findings suggest that the automated method we have developed for subdividing the human cerebral cortex into standard gyral-based neuroanatomical regions is both anatomically valid and reliable. This method may be useful for both morphometric and functional studies of the cerebral cortex as well as for clinical investigations aimed at tracking the evolution of disease-induced changes over time, including clinical trials in which MRI-based measures are used to examine response to treatment.

ZHANG F, WU Y, NORTON I, et al.

An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan

[J]. NeuroImage, 2018, 179: 429-447.

DOI:S1053-8119(18)30534-2      PMID:29920375      [本文引用: 4]

This work presents an anatomically curated white matter atlas to enable consistent white matter tract parcellation across different populations. Leveraging a well-established computational pipeline for fiber clustering, we create a tract-based white matter atlas including information from 100 subjects. A novel anatomical annotation method is proposed that leverages population-based brain anatomical information and expert neuroanatomical knowledge to annotate and categorize the fiber clusters. A total of 256 white matter structures are annotated in the proposed atlas, which provides one of the most comprehensive tract-based white matter atlases covering the entire brain to date. These structures are composed of 58 deep white matter tracts including major long range association and projection tracts, commissural tracts, and tracts related to the brainstem and cerebellar connections, plus 198 short and medium range superficial fiber clusters organized into 16 categories according to the brain lobes they connect. Potential false positive connections are annotated in the atlas to enable their exclusion from analysis or visualization. In addition, the proposed atlas allows for a whole brain white matter parcellation into 800 fiber clusters to enable whole brain connectivity analyses. The atlas and related computational tools are open-source and publicly available. We evaluate the proposed atlas using a testing dataset of 584 diffusion MRI scans from multiple independently acquired populations, across genders, the lifespan (1 day-82 years), and different health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). Experimental results show successful white matter parcellation across subjects from different populations acquired on multiple scanners, irrespective of age, gender or disease indications. Over 99% of the fiber tracts annotated in the atlas were detected in all subjects on average. One advantage in terms of robustness is that the tract-based pipeline does not require any cortical or subcortical segmentations, which can have limited success in young children and patients with brain tumors or other structural lesions. We believe this is the first demonstration of consistent automated white matter tract parcellation across the full lifespan from birth to advanced age.Copyright © 2018 Elsevier Inc. All rights reserved.

PRON A, BRUN L, DERUELLE C, et al.

Dense and structured representations of U-shape fiber connectivity in the central sulcus

[C]// International Symposium on Biomedical Imaging, Washington, DC, USA: IEEE, 2018: 700-703.

[本文引用: 2]

PRON A, DERUELLE C, COULON O.

U-shape short-range extrinsic connectivity organisation around the human central sulcus

[J]. Brain Struct Funct, 2021, 226(1): 179-193.

DOI:10.1007/s00429-020-02177-5      PMID:33245395      [本文引用: 2]

The central sulcus is probably one of the most studied folds in the human brain, owing to its clear relationship with primary sensory-motor functional areas. However, due to the difficulty of estimating the trajectories of the U-shape fibres from diffusion MRI, the short structural connectivity of this sulcus remains relatively unknown. In this context, we studied the spatial organization of these U-shape fibres along the central sulcus. Based on high quality diffusion MRI data of 100 right-handed subjects and state-of-the-art pre-processing pipeline, we first define a connectivity space that provides a comprehensive and continuous description of the short-range anatomical connectivity around the central sulcus at both the individual and group levels. We then infer the presence of five major U-shape fibre bundles at the group level in both hemispheres by applying unsupervised clustering in the connectivity space. We propose a quantitative investigation of their position and number of streamlines as a function of hemisphere, sex and functional scores such as handedness and manual dexterity. Main findings of this study are twofold: a description of U-shape short-range connectivity along the central sulcus at group level and the evidence of a significant relationship between the position of three hand related U-shape fibre bundles and the handedness score of subjects.

XUE T, ZHANG F, ZHANG C, et al.

Superficial white matter analysis: An efficient point-cloud-based deep learning framework with supervised contrastive learning for consistent tractography parcellation across populations and dMRI acquisitions

[J]. Med Image Anal, 2023, 85: 102759.

[本文引用: 2]

GUEVARA M, ROMÁN C, HOUENOU J, et al.

Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography

[J]. NeuroImage, 2017, 147: 703-725.

DOI:S1053-8119(16)30684-X      PMID:28034765      [本文引用: 4]

Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of pathogenesis triggered by abnormal connectivity. In this work we automatically created a multi-subject atlas of SWM diffusion-based bundles of the whole brain. For each subject, the complete cortico-cortical tractogram is first split into sub-tractograms connecting pairs of gyri. Then intra-subject shape-based fiber clustering performs compression of each sub-tractogram into a set of bundles. Proceeding further with shape-based clustering provides a match of the bundles across subjects. Bundles found in most of the subjects are instantiated in the atlas. To increase robustness, this procedure was performed with two independent groups of subjects, in order to discard bundles without match across the two independent atlases. Finally, the resulting intersection atlas was projected on a third independent group of subjects in order to filter out bundles without reproducible and reliable projection. The final multi-subject diffusion-based U-fiber atlas is composed of 100 bundles in total, 50 per hemisphere, from which 35 are common to both hemispheres.Copyright © 2017 Elsevier Inc. All rights reserved.

ROMÁN C, HERNÁNDEZ C, FIGUEROA M, et al.

Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data

[J]. NeuroImage, 2022, 262: 119550.

[本文引用: 4]

JIANG F, WANG Y J.

Construction of human brain templates with diffusion tensor imaging data: A review

[J]. Chinese J Magn Reson, 2018, 35(4): 520-530.

[本文引用: 1]

蒋帆, 王远军.

扩散张量成像的人脑模板构建

[J]. 波谱学杂志, 2018, 35(4): 520-530.

DOI:10.11938/cjmr20182662      [本文引用: 1]

扩散张量脑模板包含丰富的大脑白质组织信息,在空间标准化或者脑图谱创建中具有重要价值,然而基于扩散张量模型构建的脑模板精度不高,特别是在脑部复杂的神经元微观结构区域中应用受到限制.针对这一问题,研究者们提出了基于高分辨率扩散成像构建大脑模板的方法.本文对使用扩散张量成像方法进行脑模板构建的研究进展进行了综述,首先介绍了扩散张量脑模板构建的发展进程,阐述了脑模板构建中解决的技术问题及同时存在的局限性;接着详细论述了基于扩散频谱成像及高角度分辨率扩散成像构建脑模板的不同方法间的差异,并总结了这些研究方法取得的重要进展;最后通过分析目前研究进展提出该研究问题中存在的不足以及未来的发展趋势.

/