[1] |
WEHMEIER U F, PIEPERSBERG W. Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose[J]. J Appl Microbio Biotechnol, 2004, 63(6): 613-625.
|
[2] |
MELANDER A, LEBOVITZ H E, FABER O K. Sulfonyhueas. why’ which’ and how?[J]. J Diabetes Care, 1990, 13(3): 18-25.
|
[3] |
CAMPBELL L K, WHITE J R, CAMPBELL R K. Acarbose: Its role in the treatment of diabetes mellitus[J]. J Ann Pharmacother, 1996, 30(11): 1255-1262.
|
[4] |
FENG Z H, WANG Y S, ZHENG Y G. Progress in biosynthesis pathway of acarbose[J]. Biotechnology Bulletin, 2011, 27(8): 60-66.
|
|
冯志华, 王远山, 郑裕国. 阿卡波糖的生物合成途径研究进展[J]. 生物技术通报, 2011, 27(8): 60-66.
|
[5] |
WETTERGREEN S A, SHETH S, MALVEAUX J. Effects of the addition of acarbose to insulin and non-insulin regimens in veterans with type 2 diabetes mellitus[J]. Pharm Pract, 2016, 14(4): 1-4.
|
[6] |
WENG C Y, SHI L Z, WANG Y J, et al. Transcriptome analysis of Actinoplanes utahensis reveals molecular signature of saccharide impact on acarbose biosynthesis[J]. 3 Biotech, 2020, 10(11): 473.
|
[7] |
SCHAFFERT L, SCHNEIKER-BEKEL S, DYMEK S, et al. Essentiality of the maltase AmlE in maltose utilization and its transcriptional regulation by the repressor AmlR in the acarbose producing bacterium actinoplanes sp. SE50/110[J]. Front Microbiol, 2019, 10: 2448.
|
[8] |
LI Z X, YANG S B, ZHANG Z Y, et al. Enhancement of acarbose production by genetic engineering and fed‑batchfermentation strategy in Actinoplanes sp.SIPI12‑34[J]. Microb Cell Fact, 2022, 21: 240.
|
[9] |
JUNGE B, HEIKER F R, KURZ T, et al. Untersuchungen zur struktur des α-D-glucosidaseinhibitors acarbose[J]. Carbohyd Res, 1984, 128(2): 235-268.
|
[10] |
TUYEN D T, YEW G Y, CUONG N T, et al. Selection, purification, and evaluation of acarbose-an a-glucosidase inhibitor from Actinoplanes sp[J]. Chemosphere, 2021, 265: 129167.
|
[11] |
GOEKE K, DREPPER A and PAPE H. Formation of acarbose phosphate by a cell-free extract from e acarbose producer Actinoplanes sp[J]. J Antibiotic, 1996, 49(7): 661-663.
|
[12] |
LIU Y, BAI J, ZHAO Z, et al. Effects of methanol and DMSO on assaying illegal addition offluoxetine hydrochloride by 19F-qNMR[J]. Chinese Journal of New Drugs, 2020, 29(2): 220-223.
|
|
刘阳, 白洁, 赵庄, 等. 甲醇和二甲基亚砜对19F核磁共振定量法测定盐酸氟西汀非法添加的影响[J]. 中国新药杂志, 2020, 29(2): 220-223.
|
[13] |
LU A M, JIANG H M, LV B, et al. Quantitative determination of caffeine in beverages by 1H NMR with internal standard method[J]. Journal of Nanjing Agricultural University, 2014, 37(6): 119-124.
|
|
卢爱民, 蒋红梅, 吕波, 等. 核磁共振氢谱内标法测定饮料中咖啡因含量[J]. 南京农业大学学报, 2014, 37(6): 119-124.
|
[14] |
XU X J, WANG X Y, ZHAO J Y, et al. The study on quantitative hydrogen nuclear magnetic resonance[J]. Guangdong Chemical Industry, 2020, 4(47): 86-88.
|
|
徐雪晶, 万向勇, 赵锦漪, 等. 氢核磁共振定量法初探[J]. 广东化工, 2020, 4(47): 86-88.
|
[15] |
ZHAI C G, WANG P C, SHAN Y B, et al. Structure characterization and analgesic activity of novel pyrazolo[3,4-d]pyrimidin-4-one derivatives[J]. Chinese J Magn Reson, 2023, 40(1): 1-9.
|
|
翟重钢, 汪鹏程, 单玉宝, 等. 新型吡唑并[3,4-d]嘧啶-4-酮类衍生物的结构表征和阵痛活性[J]. 波谱学杂志, 2023, 40(1): 1-9.
doi: 10.11938/cjmr20222995
|
[16] |
WANG S H, ZHANG J D, YIN X M, et al. NMR assignments of 6-(4-chlorphenoxy)-tetrazolo[5,1-a]phthalazine[J]. Chinese J Magn Reson, 2020, 37(3): 390-398.
|
|
王思宏, 张敬东, 尹秀梅, 等. 6-(4-氯苯氧基)四唑并[5,1-a]酞嗪的核磁共振谱峰归属[J]. 波谱学杂志, 2020, 37(3): 390-398.
doi: 10.11938/cjmr20192776
|
[17] |
赵天增. 核磁共振氢谱[M]. 北京: 北京大学出版社, 1981.
|
[18] |
赵天增. 核磁共振碳谱[M]. 郑州: 河南科学技术出版社, 1993.
|
[19] |
赵天增, 秦海林, 张海艳, 等. 核磁共振二维谱[M]. 北京: 化学工业出版社, 2017.
|