[1] |
张鹏. 人类海马体功能剖分及连接模式分析[D]. 长沙: 国防科学技术大学, 2019.
|
[2] |
INSAUSTI R, MUOZLÓPEZ M, INSAUSTI A M. The CA2 hippocampal subfield in humans: A review[J]. Hippocampus, 2023, 33(6): 712-729.
doi: 10.1002/hipo.23547
pmid: 37204159
|
[3] |
AKKUS Z, GALIMZIANOVA A, HOOGI A, et al. Deep learning for brain MRI segmentation: state of the art and future directions[J]. J Digit Imaging, 2017, 30(4): 449-459.
doi: 10.1007/s10278-017-9983-4
pmid: 28577131
|
[4] |
LI W. Automatic segmentation of liver tumor in CT images with deep convolutional neural networks[J]. J Comput Commun, 2015, 3(11): 146-151.
|
[5] |
MONDAL A K, DOLZ J, DESROSIERS C. Few-shot 3d multi-modal medical image segmentation using generative adversarial learning[J]. arXiv preprint arXiv: 1810.12241, 2018.
|
[6] |
HALLER J W, CHRISTENSEN G E, JOSHI S C, et al. Hippocampal MR imaging morphometry by means of general pattern matching[J]. Radiology, 1996, 199(3): 787-791.
pmid: 8638006
|
[7] |
KWAK K, YOON U, LEE D K, et al. Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening[J]. Magn Reson Imaging, 2013, 31(7): 1190-1196.
doi: 10.1016/j.mri.2013.04.008
pmid: 23684964
|
[8] |
HECKEMANN R A, HAJNAL J V, ALJABAR P, et al. Automatic anatomical brain MRI segmentation combining label propagation and decision fusion[J]. NeuroImage, 2006, 33(1): 115-126.
doi: 10.1016/j.neuroimage.2006.05.061
pmid: 16860573
|
[9] |
WU G, SHEN D. Hierarchical Label Fusion with Multiscale Feature Representation and Label-Specific Patch Partition[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer, Cham, 2014.
|
[10] |
HU S, PIERRICK COUPÉ, PRUESSNER J C, et al. Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging[J]. NeuroImage, 2011, 58(2): 549-559.
doi: 10.1016/j.neuroimage.2011.06.054
pmid: 21741485
|
[11] |
ZARPALAS D, GKONTRA P, DARAS P, et al. Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms[C]// Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on.IEEE, 2013.
|
[12] |
HAO Y F, WANG T Y, ZHANG X Q, et al. Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation[J]. Hum Brain Mapp, 2014, 35: 2674-2697.
doi: 10.1002/hbm.22359
pmid: 24151008
|
[13] |
KHAN A R, CHERBUIN N, WEN W, et al. Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): Validation on hippocampus segmentation[J]. NeuroImage, 2011, 56(1): 126-139.
doi: 10.1016/j.neuroimage.2011.01.078
pmid: 21296166
|
[14] |
DE ALEJO R P, RUIZ-CABELLO J, CORTIJO M, et al. Computer-assisted enhanced volumetric segmentation magnetic resonance imaging data using a mixture of artificial neural networks[J]. Magn Reson Imaging, 2003, 21(8): 901-912.
pmid: 14599541
|
[15] |
CAO L, LI L, ZHENG J, et al. Multi-task neural networks for joint hippocampus segmentation and clinical score regression[J]. Multimedia Tools Appl, 2018, 77(1): 1-18.
|
[16] |
ATALOGLOU D, DIMOU A, ZARPALAS D, et al. Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning[J]. Neuroinformatics, 2019, 17(4): 563-582.
doi: 10.1007/s12021-019-09417-y
pmid: 30877605
|
[17] |
HAZARIKA R A, MAJI A K, SYIEM R, et al. Hippocampus segmentation using u-net convolutional network from brain magnetic resonance imaging (MRI)[J]. J Digit Imaging, 2022, 35(4): 893-909.
doi: 10.1007/s10278-022-00613-y
pmid: 35304675
|
[18] |
DENG H, ZHANG Y, LI R, et al. Combining residual attention mechanisms and generative adversarial networks for hippocampus segmentation[J]. Tsinghua Sci Technol, 2022, 27(1): 68-78.
|
[19] |
OU Y X, GAO M, ZHAO D, et al. SA-TF-UNet: MRI hippocampus segmentation based on spatial attention mechanism and Transformer[J]. Journal of Image and Graphics, 2023, 28: 3191-3202.
|
|
欧宇轩, 高敏, 赵地, 等. SA-TF-UNet: 基于空间注意力机制和Transformer的MRI海马体分割[J]. 中国图象图形学报, 2023, 28: 3191-3202.
|
[20] |
WEI Z H, YAN S J, HAN B S, et al. Multi-output 3D convolutional neural network for diagnosis of Alzheimer's disease[J]. Chinese J Magn Reson, 2021, 38(1): 92-100.
|
|
魏志宏, 闫士举, 韩宝三, 等. 基于多输出的3D卷积神经网络诊断阿尔兹海默病[J]. 波谱学杂志, 2021, 38(1): 92-100.
doi: 10.11938/cjmr20202808
|
[21] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[22] |
ZHONG Z S, KIM Y S, PLICHTA K, et al. Simultaneous co-segmentation of tumors in PET-CT images using deep fully convolutional networks[J]. Med Phys, 2019, 46: 619-633.
|
[23] |
ZHAO X, ZHANG X, LI X J, et al. Multimodal glioma segmentation with fusion of multiple self-attention and deformable convolutions[J]. Chinese J Magn Reson, 2023, 40(3): 280-292.
|
|
赵欣, 张鑫, 李鑫杰, 等. 融合多重自注意力和可变形卷积的多模态脑胶质瘤分割[J]. 波谱学杂志, 2023, 40(3): 280-292.
doi: 10.11938/cjmr20233059
|
[24] |
LOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. ArXiv Preprint Arxiv: 1502.03167, 2015.
|
[25] |
LIAO X, QIAN Y, CHEN Y, et al. MMTLNet: Multi-modality transfer learning network with adversarial training for 3D whole heart segmentation[J]. Comput Med Imaging Graphics, 2020(85): 101785.
|
[26] |
MADANI A, MORADI M, SYEDA-MAHMOOD T F. Medical image classification based on a generative adversarial network trained discriminator: US, 10937540B2[P]. 2021-03-02.
|
[27] |
ARUN PANDIAN J, KANCHANADEVI K, KUMAR D, et al. Deep convolutional generative adversarial network for metastatic tissue diagnosis in lymph node section[M]// System Design for Epidemics Using Machine Learning and Deep Learning. Springer, Cham, 2023: 153-166.
|
[28] |
REN H J, MA Y, XIAO L. Knee joint model construction and local specific absorptivity estimation based on generative adversarial network[J]. Chinese J Magn Reson, 2023, 40(4): 410-422.
|
|
任宏晋, 马岩, 肖亮. 基于生成对抗网络的膝关节模型构建与局部比吸收率估计[J]. 波谱学杂志, 2023, 40(4): 410-422.
doi: 10.11938/cjmr20233053
|
[29] |
CHAKRABORTY S, CHATTERJEE S, DEY N, et al. Modified cuckoo search algorithm in microscopic image segmentation of hippocampus[J]. Microsc Res Techniq, 2017, 80(10): 1051-1072.
doi: 10.1002/jemt.22900
pmid: 28557041
|
[30] |
SMALL G W, HARRISON T M, BURGGREN A C, et al. Altered memory-related functional connectivity of the anterior and posterior hippocampus in older adults at increased genetic risk for alzheimer's disease[J]. Hum Brain Mapp, 2013, 37(1): 366-380.
|
[31] |
PHAM D L, XU C, PRINCE J L. Current methods in medical image segmentation[J]. Annu Rev Biomed Eng, 2000, 2: 315-337.
pmid: 11701515
|
[32] |
SHIN H C, TENENHOLTZ N A, ROGERS J K, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks[C]// International workshop on simulation and synthesis in medical imaging. Springer, Cham, 2018: 1-11.
|