波谱学杂志 ›› 2025, Vol. 42 ›› Issue (2): 143-153.doi: 10.11938/cjmr20243130cstr: 32225.14.cjmr20243130

• 研究论文 • 上一篇    下一篇

基于全局和局部特征信息的生成对抗网络在海马体分割中的应用

魏志宏1, 孔旭东1, 孔燕1, 闫士举2, 丁阳1, 魏贤顶1, 孔栋1, 杨波1,*()   

  1. 1.江南大学附属医院 肿瘤放疗科,江苏 无锡 214122
    2.上海理工大学 健康科学与工程学院,上海 200093
  • 收稿日期:2024-09-03 出版日期:2025-06-05 在线发表日期:2024-11-18
  • 通讯作者: *Tel: 13506177792, E-mail: wuxiyangbo@163.com.

Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation

WEI Zhihong1, KONG Xudong1, KONG Yan1, YAN Shiju2, DING Yang1, WEI Xianding1, KONG Dong1, YANG Bo1,*()   

  1. 1. Radiotherapy oncology department, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
    2. School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2024-09-03 Published:2025-06-05 Online:2024-11-18
  • Contact: *Tel: 13506177792, E-mail: wuxiyangbo@163.com.

摘要:

海马体由于结构复杂、体积小,导致对其进行精准分割较为困难.为此,本文提出一种基于全局和局部特征信息的生成对抗网络(GLGAN)分割方法.首先,为了提高网络稳定性和海马体分割精度,减少信息丢失和梯度爆炸等问题,本文通过改进生成对抗网络的生成器和损失函数,提出了全局生成对抗网络(GGAN).其次,由于判别器本质上是二分类的分类器,对微小局部变换不敏感,于是提出具有全局和局部特征信息的双判别器网络结构的生成对抗网络.最后,设计一个平衡生成对抗网络(GAN)对抗性损失和3D u-net分割损失的总损失函数.实验结果表明基于GLGAN的分割方法有利于密集评估海马体,促进判别器将生成器生成的掩膜值推向更真实分布,提高海马体分割精度.该方法分割海马体的Dice系数为0.804、IOU为0.672.

关键词: 生成对抗网络(GAN), 3D卷积神经网络, 分割, 海马体, 3D u-net

Abstract:

Due to the complex structure and small size of the hippocampus, precise segmentation of the hippocampus remains challenging. To address this issue, this study proposes a generative adversarial network (GAN) based on global and local feature information (GLGAN) for hippocampus segmentation. First, to improve network stability and segmentation accuracy while reducing the likelihood of problems such as information loss and gradient explosion, we proposed the global GAN (GGAN) by optimizing the generator and loss function of GAN. Second, since the discriminator is essentially a binary classifier and is not sensitive to small local changes, we introduced a GAN method of dual discriminator network structure that integrates both global and local feature information. Finally, a total loss function was designed to balance GAN adversarial loss and 3D u-net segmentation loss. The experimental results show that proposed method based on GLGAN facilitates intensive evaluation of the hippocampus, and drives the discriminator to push the mask value provided by the generator to a more realistic distribution, thereby enhancing hippocampus segmentation accuracy. The Dice coefficient and IOU for hippocampus segmentation using GLGAN are 0.804 and 0.672 respectively.

Key words: generative adversarial network (GAN), 3D CNN, segmentation, hippocampus, 3D u-net

中图分类号: