波谱学杂志 ›› 2025, Vol. 42 ›› Issue (3): 221-230.doi: 10.11938/cjmr20243141cstr: 32225.14.cjmr20243141
收稿日期:
2024-12-23
出版日期:
2025-09-05
在线发表日期:
2025-01-22
通讯作者:
* Tel: 15726259486, E-mail: kouxinhui@qust.edu.cn.基金资助:
Received:
2024-12-23
Published:
2025-09-05
Online:
2025-01-22
Contact:
* Tel: 15726259486, E-mail: kouxinhui@qust.edu.cn.摘要:
手性分子识别对于化学及制药行业至关重要,我们合成了三种含氨基酸结构单元的手性脲(L-Phe-U、L-Ala-U以及L-Val-U)作为手性溶剂化试剂,利用NMR技术对含有不同取代基的手性有机羧酸分子进行对映体识别. 在4-二甲氨基吡啶的辅助作用下,L-Phe-U对不同的有机羧酸都具有一定的手性识别能力,R型和S型CαH基团1H的化学位移差(ΔΔδ)范围可达2.4 ~ 16 Hz,同时能够准确测定RS-扁桃酸的对映体过量值. 通过比较发现手性溶剂化试剂含有的苯基及底物手性碳中心连接的基团都会影响手性脲的识别能力. 我们利用DOSY实验测定了扁桃酸在不同体系下的扩散系数,对R型和S型对映体进行区分,揭示了其手性识别的动力学变化.
中图分类号:
寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230.
KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units[J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230.
[1] | HUANG Z, YU S S, WEN K L, et al. Zn(II) promoted dramatic enhancement in the enantioselective fluorescent recognition of functional chiral amines by a chiral aldehyde[J]. Chem Sci, 2014, 5(9): 3457-3462. |
[2] | MIYABE T, IIDA H, OHNISHI A, et al. Enantioseparation on poly(phenyl isocyanide)s with macromolecular helicity memory as chiral stationary phases for HPLC[J]. Chem Sci, 2012, 3(3): 863-867. |
[3] | METOLA P, ANSLYN E V, JAMES T D, et al. Circular dichroism of multi-component assemblies for chiral amine recognition and rapid determination[J]. Chem Sci, 2012, 3(1): 156-161. |
[4] | MACHALSKA E, HACHLICA N, ZAJAC G, et al. Chiral recognition a stereo dynamic vanadium probe using the electronic circular dichroism effect in differential Raman scattering[J]. Phys Chem, 2021, 23(40): 23336-23340. |
[5] | PU L. Enantioselective fluorescent sensors: A tale of BINOL[J]. Acc Chem Res, 2012, 45(2): 150-163. |
[6] |
HALAY E, BOZKURT S. Enantioselective recognition of carboxylic acids by novel fluorescent triazine-based thiazoles[J]. Chirality, 2018, 30(3): 275-283.
doi: 10.1002/chir.22792 pmid: 29210117 |
[7] | SPEYBROUCK D, HOWSAM M, LIPKA E. Recent developments in preparative-scale supercritical fluid- and liquid chromatography for chiral separations[J]. TRAC Trend Anal Chem, 2020, 133: 116090. |
[8] |
SUN G L, LUO Y C, YAN Z H, et al. Chiral metal-organic frameworks-based materials for chromatographic enantioseparation[J]. Chinese Chem Lett, 2024, 35(12): 109787.
doi: 10.1016/j.cclet.2024.109787 |
[9] | MAMMONE F R, PANUSA A, RISOLUTI R, et al. Green HPLC enantioseparation of chemopreventive chiral isothiocyanates homologs on an immobilized chiral stationary phase based on amylose tris-[(S)-α-methylbenzylcarbamate][J]. Molecules, 2024, 29(12): 2895. |
[10] |
MAAS A, LOSACKER M, HESS C. Chromatographic separation of R/S-enantiomers of amphetamine and methamphetamine: Pathways of methamphetamine synthesis and detection in blood samples by qualitative enantioselective LC-MS/MS analysis[J]. Forensic Sci Int, 2018, 291: 138-143.
doi: S0379-0738(18)30533-4 pmid: 30199817 |
[11] | VALLAMKONDA B, SETHI S, SATTI P, et al. Enantiomeric analysis of chiral drugs using mass spectrometric methods: A comprehensive review[J]. Chirality, 2024, 36(8): e23705. |
[12] | RAIKAR P, BANNIMATH G. Recent trends in chiral separation-a collective paradigm of selected chiral impurities[J]. Curr Pharm Anal, 2020, 16(5): 456-473. |
[13] | WANG Z, WANG W, LUO A Q, et al. Recent progress for chiral stationary phases based on chiral porous materials in high-performance liquid chromatography and gas chromatography separation[J]. J Sep Sci, 2024, 47(13): 2400073. |
[14] | PARKER D. NMR Determination of enantiomeric purity[J]. Chem Rev, 1991, 91(7): 1441-1457. |
[15] | SEO M-S, KIM H. 1H NMR chiral analysis of charged molecules via ion pairing with aluminum complexes[J]. J Am Chem Soc, 2015, 137(44): 14190-14195. |
[16] | SILVA M S. Recent advances in multinuclear NMR spectroscopy for chiral recognition of organic compounds[J]. Molecules, 2017, 22(2): 247. |
[17] | WADHWA S, BUYENS D, KORVINK J G. Direct chiral discrimination with NMR[J]. Adv Mater, 2024, 36(40): 2408547. |
[18] | CABRAL T L G, POGGETTO G D, DA SILVA J P B, et al. Determining the absolute configuration of small molecules by diffusion NMR experiments[J]. Angew Chem Int Edit, 2025, 64: e202418508. |
[19] | ZENG Y, BAO W, GU G, et al. Enantiodifferentiation of chiral diols and diphenols via recognition-enabled chromatographic 19F NMR[J]. Magn Reson Lett, 2024, 4(4): 200112. |
[20] | YANG Y, HUANG S H, FENG J W. Mechanisms underlying enantiomeric discrimination of its structural analogues with a diphenylethylenediamine derivative revealed by proton NMR spectroscopy[J]. Chinese J Magn Reson, 2019, 36(4): 525-533. |
杨盈, 黄少华, 冯继文. 核磁共振氢谱中二苯基乙二胺衍生物手性识别其结构类似物[J]. 波谱学杂志, 2019, 36(4): 525-533.
doi: 10.11938/cjmr20182703 |
|
[21] |
WENZEL T J, CHISHOLM C D. Using NMR spectroscopic methods to determine enantiomeric purity and assign absolute stereochemistry[J]. Prog Nucl Mag Res Sp, 2011, 59(1): 1-63.
doi: 10.1016/j.pnmrs.2010.07.003 pmid: 21600355 |
[22] | BIAN G L, YANG S W, HUANG H Y, et al. A bisthiourea-based 1H NMR chiral sensor for chiral discrimination of a variety of chiral compounds[J]. Sensors Actuat B-Chem, 2016, 231: 129-134. |
[23] | BIAN G, YANG S, HUANG H, et al. Chirality sensing of tertiary alcohols by a novel strong hydrogen-bonding donor-selenourea[J]. Chem Sci, 2016, 7(2): 932-938. |
[24] | BOZKURT S, TURKMEN M B. New chiral oxo-bridged calix[2]arene[2]triazine for the enantiomeric recognition of alpha-racemic carboxylic acids[J]. Tetrahedron Asymmetry, 2016, 27(11-12): 443-447. |
[25] |
ITO S, OKUNO M, ASAMI M. Differentiation of enantiomeric anions by NMR spectroscopy with chiral bisurea receptors[J]. Org Biomol Chem, 2018, 16(2): 213-222.
doi: 10.1039/c7ob02318a pmid: 29136083 |
[26] | GUNAL S E, TUNCEL S T, DOGAN I. Enantiodiscrimination of carboxylic acids using single enantiomer thioureas as chiral solvating agents[J]. Tetrahedron, 2020, 76(18): 131141. |
[27] | BALZANO F, UCCELLO-BARRETTA G, AIELLO F. Chapter 9-Chiral analysis by NMR spectroscopy: chiral solvating agents[M]// POLAVARAPU P L. Chiral Analysis (Second Edition). Elsevier, 2018: 367-427. |
[28] | UCCELLO-BARRETTA G, BALZANO F. Chiral NMR solvating additives for differentiation of enantiomers[J]. Topics Curr Chem, 2016, 341: 69-131. |
[29] | RECCHIMURZO A, MICHELETTI C, UCCELLO-BARRETTA G, et al. Thiourea derivative of 2-[(1R)-1-Aminoethyl]phenol: a flexible pocket-like chiral solvating agent (CSA) for the enantiodifferentiation of amino acid derivatives by NMR spectroscopy[J]. J Org Chem, 2020, 85(8): 5342-5350. |
[30] | SIAU W Y, WANG J. Asymmetric organocatalytic reactions by bifunctional amine-thioureas[J]. Catal Sci Technol, 2011, 1(8): 1298-1310. |
[31] |
SERDYUK O V, HECKEL C M, TSOGOEVA S B. Bifunctional primary amine-thioureas in asymmetric organocatalysis[J]. Org Biomol Chem, 2013, 11(41): 7051-7071.
doi: 10.1039/c3ob41403e pmid: 24057617 |
[32] | FENG G S, CHEN M W, SHI L, et al. Facile synthesis of chiral cyclic ureas through hydrogenation of 2-hydroxypyrimidine/pyrimidin-2(1h)-one tautomers[J]. Angew Chem Int Edit, 2018, 57(20): 5853-5857. |
[33] | LIU Y, WANG J, WEI Z, et al. Highly enantioselective synthesis of acyclic N,N'-acetals by chiral urea derived from quinine catalyzed the addition of aryl amines to isatin-derived ketimines[J]. Org Lett, 2019, 21(14): 5719-5724. |
[34] |
RECCHIMURZO A, MICHELETTI C, UCCELLO-BARRETTA G, et al. A dimeric thiourea CSA for the enantiodiscrimination of amino acid derivatives by NMR spectroscopy[J]. J Org Chem, 2021, 86(11): 7381-7389.
doi: 10.1021/acs.joc.1c00340 pmid: 34019407 |
[35] | DE LOS SANTOS Z A, YUSIN G, WOLF C. Enantioselective sensing of carboxylic acids with a bis (urea) oligo (phenylene) ethynylene foldamer[J]. Tetrahedron, 2019, 75(11): 1504-1509. |
[36] | RECCHIMURZO A, BALZANO F, BARRETTA G U, et al. Bis-thiourea chiral sensor for the NMR enantiodiscrimination of N-acetyl and N-trifluoroacetyl amino acid derivatives[J]. J Org Chem, 2022, 87(18): 11968-11978. |
[37] | KONRAD N, HORETSKI M, SIHTMAE M, et al. Thiourea organocatalysts as emerging chiral pollutants: en route to porphyrin-based (chir) optical sensing[J]. Chemosensors, 2021, 9(10): 278. |
[38] | AIELLO F, RECCHIMURZO A, BALZANO F, et al. A Thiourea derivative of 2-[(1)-1-aminoethyl]phenol as a chiral sensor for the determination of the absolute configuration of N-3,5-dinitrobenzoyl derivatives of amino acids[J]. Molecules, 2024, 29(6): 1319. |
[39] | MA M S, LEI X X. Chiral recognition of ibuprofen enatiomers by a chiral thiourea in the presence of DMAP using NMR[J]. Chinese J Magn Reson, 2014, 31(4): 564-571. |
马敏山, 雷新响. 手性硫脲在DMAP条件下对布洛芬类药物的NMR手性识别[J]. 波谱学杂志, 2014, 31(4): 564-571.
doi: 10.11938/cjmr20140410 |
|
[40] | XU K X, LIU S Y, HE Y B, et al. Study on synthesis and chiral recognition of chiral hosts containing amino acid unit[J]. Acta Chim Sin, 2006, 64(21): 2205-2209. |
徐括喜, 刘顺英, 何永炳, 等. 含氨基酸单元的手性主体的合成及手性识别研究[J]. 化学学报, 2006, 64(21): 2205-2209. | |
[41] | KOU X H, SHEN Y, LI Z B. Stereoselective ring-opening polymerization of rac-lactide using chiral urea/strong organobase binary catalyst system[J]. Acta Polym Sin, 2020, 51(10): 1121-1129. |
寇新慧, 沈勇, 李志波. 手性脲/有机碱二元体系协同催化外消旋丙交酯立构选择性开环聚合[J]. 高分子学报, 51(10): 1121-1129. | |
[42] |
BIAN G, FAN H, YANG S, et al. A chiral bisthiourea as a chiral solvating agent for carboxylic acids in the presence of DMAP[J]. J Org Chem, 2013, 78(18): 9137-9142.
doi: 10.1021/jo4013546 pmid: 24050150 |
[43] | GAMBHIR D, KUMAR K, MURUGESAN P, et al. Amino acid-based molecular and membranous chiral tools for enantiomeric recognition[J]. Langmuir, 2024, 40(5): 2745-2753. |
[44] | CIOS P, ROMANSKI J. Enantioselective recognition of sodium carboxylates by an 1,8-diaminoanthracene based ion pair receptor containing amino acid units[J]. Tetrahedron Lett, 2016, 57(34): 3866-3869. |
[1] | 沈志强, 邓亚博, 杨培菊, 胡霄雪, 黄晓卷, 许传芝, 宋焕玲. 一种用于光诱导反应体系的原位NMR装置的设计与应用[J]. 波谱学杂志, 2025, 42(1): 22-33. |
[2] | 刘庭伟, 彭博文, 徐雅洁, 王亚, 王峰, 郁朋, 杨晓冬. 一种用于磁共振波谱仪的主动匀场电源设计[J]. 波谱学杂志, 2024, 41(2): 117-127. |
[3] | 王峰, 刘庭伟, 徐雅洁, 郁朋, 王亚, 彭博文, 杨晓冬. 一种带外部锁场通道的小型化核磁共振射频探头设计[J]. 波谱学杂志, 2023, 40(3): 332-340. |
[4] | 王远方,王小花,舒畅,张许,刘买利,曾丹云. 溶液中ATAD2溴结构域聚集行为的研究[J]. 波谱学杂志, 2023, 40(2): 169-178. |
[5] | 赵昶,龚洲. 顺磁核磁共振技术研究蛋白质遭遇复合物的动态结构[J]. 波谱学杂志, 2023, 40(2): 148-157. |
[6] | 裴云山, 张偲, 刘晓黎, 成凯, 张则婷, 李从刚. 蛋白质二硫键异构酶与α-突触核蛋白的相互作用及对其聚集的影响[J]. 波谱学杂志, 2022, 39(4): 381-392. |
[7] | 胡涵,王伟宇,徐君,邓风. Pd-Sn双金属催化剂催化1, 3-丁二烯加氢反应的仲氢诱导极化研究[J]. 波谱学杂志, 2022, 39(2): 133-143. |
[8] | 徐倩,陈朗,胡翔颖,李从刚,刘乙祥,姜凌. T69E模拟磷酸化修饰对Bcl-2与Nur77相互作用的影响[J]. 波谱学杂志, 2022, 39(1): 87-95. |
[9] | 胡晓东,蓝文贤,王春喜,曹春阳. 靶向肿瘤因子c-MYC基因启动区G4-DNA的小分子药物设计及核磁共振研究进展[J]. 波谱学杂志, 2021, 38(4): 503-513. |
[10] | 王崇武,黄曦,石磊,陈世桢,周欣. 组织蛋白酶B响应的超极化129Xe MRI探针对肺癌细胞的超灵敏探测[J]. 波谱学杂志, 2021, 38(3): 336-344. |
[11] | 吴嘉敏,贺玉成,徐征,朱延河,姜文正. 用于土壤水分测量的磁共振射频线圈宽频匹配方法[J]. 波谱学杂志, 2021, 38(3): 414-423. |
[12] | 王子豪,徐赫,汪涛,杨善中,丁运生,魏海兵. 外型和内型C-2位单取代降冰片烯衍生物的核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(3): 323-335. |
[13] | 余锦波,张偲,张则婷,徐国华,李从刚. Alpha-突触核蛋白与完整线粒体相互作用的NMR研究[J]. 波谱学杂志, 2021, 38(2): 164-172. |
[14] | 赵心怡,韩冬,罗红军,沈文斌,杨功俊. 德拉沙星葡甲胺波谱学数据解析[J]. 波谱学杂志, 2021, 38(2): 268-276. |
[15] | 廖怀玉, 韩红园, 陈飞, 张海艳, 杨静, 赵天增. 苦皮藤中两个新的 β-二氢沉香呋喃型化合物的 NMR 数据解析[J]. 波谱学杂志, 2021, 38(1): 101-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||