波谱学杂志

• •    

基于对抗学习与交叉注意力的多任务阿尔茨海默病分类

顾佳佳, 王远军   

  1. 上海理工大学 医学影像技术研究所,上海 200093
  • 收稿日期:2025-05-31 修回日期:2025-09-17 接受日期:2025-10-14
  • 通讯作者: 王远军 E-mail:yjusst@126.com

Multi-task Alzheimer's Disease Classification Based on Adversarial Learning and Cross-Attention

GU Jiajia,WANG Yuanjun   

  1. Institute of Medical Imaging Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2025-05-31 Revised:2025-09-17 Accepted:2025-10-14
  • Contact: WANG Yuanjun E-mail:yjusst@126.com

摘要: 磁共振成像和正电子发射断层扫描是阿尔茨海默病早期诊断常用的成像技术.结合这两种模态可同时利用解剖和代谢信息更全面地评估大脑状态.然而,传统多模态融合主要通过通道拼接,未能充分利用模态间的互补信息,影响了模型的有效性.为此,本文提出了一种基于对抗学习与交叉注意力的多任务阿尔茨海默病分类模型.该模型通过对抗学习减少不同模态间的特征差异,并用交叉注意力进行特征融合,同时将脑龄预测任务作为辅助任务提升分类性能.实验结果表明,该方法在阿尔茨海默病、轻度认知障碍和正常对照分类任务中,准确率和F1分数分别达到91.10%和91.01%,这不仅提高了早期诊断的准确性,还增强了对疾病进展的监测能力,为阿尔茨海默病的临床干预提供重要支持.

关键词: 对抗学习, 交叉注意力, 多任务, 阿尔茨海默病, 多模态

Abstract:

Magnetic resonance imaging and positron emission tomography are imaging techniques commonly used for the early diagnosis of Alzheimer's disease. Combining these two modalities enables a more comprehensive assessment of brain status using both anatomical and metabolic information. However, traditional multimodal fusion is mainly through channel splicing, which fails to fully utilize the complementary information between modalities and affects the effectiveness of the model. To this end, this paper proposes a multi-task Alzheimer's disease classification model based on adversarial learning and cross-attention. The model reduces the feature differences between different modalities through adversarial learning and uses cross-attention for feature fusion, while the brain age prediction task is used as an auxiliary task to enhance the classification performance. The experimental results show that the method achieves an accuracy rate of 91.10% and an F1 score of 91.01% in the classification tasks of Alzheimer's disease, mild cognitive impairment and normal control classification tasks, respectively, which not only improves the accuracy of early diagnosis, but also enhances the ability to monitor the disease progression, and provides an important support for clinical interventions in Alzheimer's disease.

Key words: adversarial learning, cross-attention mechanisms, multitasking, Alzheimer's disease, multimodality