Chinese Journal of Magnetic Resonance
Previous Articles Next Articles
DING Guang-liang*,CHOPP Michael,LI Lian,ZHANG Li,ZHANG Zheng-gang,LI Qing-jiang,JIANG Quan
Received:
2013-08-12
Revised:
2013-11-02
Published:
2014-03-05
Online:
2014-03-05
About author:
DING Guang-liang(1963-), male, born in Jiangsu, PhD., his research focuses on MRI, Tel: +01-313-916-2620,E-mail: gdingl@hfhs.org. *Corresponding author.
Supported by:
National Institutes of Health, USA (NIH) P01 NS23393, NS42345; R01 NS38292, NS43324, NS48349, HL64766.
CLC Number:
DING Guang-liang*,CHOPP Michael,LI Lian,ZHANG Li,ZHANG Zheng-gang,LI Qing-jiang,JIANG Quan. Magnetic Resonance Imaging of Stroke in the Rat[J]. Chinese Journal of Magnetic Resonance.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Broderick J P, William M. Feinberg lecture: Stroke therapy in the year 2025: Burden, breakthroughs, and barriers to progress[J]. Stroke, 2004, 35: 205-211 [2] Fieschi C, Argentino C, Lenzi G L, et al. Clinical and instrumental evaluation of patients with ischemic stroke within the first six hours[J]. J Neurol Sci, 1989, 91: 311-321 [3] NINDS. The national institute of neurological disorders and stroke rt-pa stroke study group: Tissue plasminogen activator for acute ischemic stroke[J]. N Engl J Med, 1995, 333: 1 581-1 587 [4] Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke[J]. N Engl J Med, 2008, 359: 1 317-1 329. [5] Zhang Z G, Chopp M. Neurorestorative therapies for stroke: Underlying mechanisms and translation to the clinic[J]. Lancet Neurol, 2009, 8: 491-500. [6] Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain[J]. J Neurol Sci, 2008, 265: 97-101. [7] Zhang Z G, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat[J]. Ann Neurol, 2003, 53: 259-263. [8] Chopp M, Li Y. Treatment of stroke and intracerebral hemorrhage with cellular and pharmacological restorative therapies[J]. Acta Neurochir Suppl, 2008, 105: 79-83. [9] Chopp M, Zhang Z G, Jiang Q. Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke[J]. Stroke, 2007, 38: 827-831. [10] Zhang R L, Chopp M, Zhang Z G, et al. A rat model of focal embolic cerebral ischemia[J]. Brain Res, 1997, 766(1-2): 83-92. [11] Haase A, Frahm J, Matthaei D, et al. Flash imaging. Rapid nmr imaging using low flip-angle pulses[J]. J Mag Res, 1986, 67: 258-266. [12] Ding G, Jiang Q, Zhang L, et al. Analysis of combined treatment of embolic stroke in rat with r-tpa and a gpiib/iiia inhibitor[J]. J Cereb Blood Flow Metab, 2005, 25: 87-97. [13] Williams D, Detre J, Leigh J, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proc Nat'l Acad Sci USA, 1992, 89: 212-216. [14] Dixon W T, Du L N, Faul D D, et al. Projection angiograms of blood labeled by adiabatic fast passag[J]. Magn Reson Med, 1986, 3: 454-462. [15] Ding G, Jiang Q, Li L, et al. Mri of combination treatment of embolic stroke in rat with rtpa and atorvastatin[J]. J Neurol Sci, 2006, 246: 139-147. [16] Jiang Q, Zhang R L, Zhang Z G, et al. Diffusion-, t2-, and perfusion-weighted nuclear magnetic resonance imaging of middle cerebral artery embolic stroke and recombinant tissue plasminogen activator intervention in the rat[J]. J Cereb Blood Flow Metab, 1998, 18: 758-767. [17] Hoehn-Berlage M, Eis M, Back T, et al. Changes of relaxation times (t1, t2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: Temporal evolution, regional extent, and comparison with histology[J]. Magn Reson Med, 1995, 34: 824-834. [18] Hoehn-Berlage M, Norris D G, Kohno K, et al. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: The relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances[J]. J Cereb Blood Flow Metab, 1995, 15: 1 002-1 011. [19] Knight R A, Dereski M O, Helpern J A, et al. Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Comparison with histopathology in rats[J]. Stroke, 1994, 25: 1 252-1 261. [20] DeWitt L D, Kistler J P, Miller D C, et al. NMR-neuropathologic correlation in stroke[J]. Stroke, 1987, 18: 342-351. [21] Levesque I, Sled J G, Narayanan S, et al. The role of edema and demyelination in chronic t1 black holes: A quantitative magnetization transfer study[J]. J Magn Reson Imaging, 2005, 21: 103-110. [22] Jacobs M A, Zhang Z G, Knight R A, et al. A model for multiparametric MRI tissue characterization in experimental cerebral ischemia with histological validation in rat: Part 1[J]. Stroke, 2001, 32: 943-949. [23] Soltanian-Zadeh H, Windham J P. Novel and general approach to linear filter design for contrast-to-noise ratio enhancement of magnetic resonance images with multiple interfering features in the scene[J]. J Electron Imaging, 1992, 1: 171-182. [24] Ding G, Jiang Q, Li L, et al. Characterization of cerebral tissue by MRI map isodata in embolic stroke in rat[J]. Brain Res, 2006, 1 084: 202-209. [25] Ding G, Jiang Q, Zhang L, et al. Multiparametric isodata analysis of embolic stroke[J]. J Neurol Sci, 2004, 223: 135-143. [26] Ding G L, Jiang Q, Li L, et al. Cerebral tissue repair and atrophy after embolic stroke in rat: An MRI study of erythropoietin therapy[J]. J Neurosci Res, 2010, 88(14): 3 206-3 214. [27] Henkelman R M, Stanisz G J, Graham S J. Magnetization transfer in MRI: A review[J]. NMR Biomed, 2001, 14: 57-64. [28] Look D C, Locker D R. Time saving in measurement of NMR and epr relaxation times[J]. Rev Sci Instrum, 1970, 41: 250-251. [29] Patlak C S, Blasberg R G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations[J]. J Cereb Blood Flow Metab, 1985, 5: 584-590. [30] Patlak C S, Blasberg R G, Fenstermacher J D. Graphical evaluation of blood-to-brain transfer constants from multipletime uptake data[J]. J Cereb Blood Flow Metab, 1983, 3: 1-7. [31] Ewing J R, Jiang Q, Boska M, et al. T1 and magnetization transfer at 7 tesla in acute ischemic infarct in the rat[J]. Magn Reson Med, 1999, 41: 696-705. [32] Ding G, Nagesh V, Jiang Q, et al. Early prediction of gross hemorrhagic transformation by noncontrast agent mri cluster analysis after embolic stroke in rat[J]. Stroke, 2005, 36: 1 247-1 252. [33] Quarles C C, Gore J C, Xu L, et al. Comparison of dual-echo dsc-mri- and dce-MRI-derived contrast agent kinetic parameters[J]. Magn Reson Imaging, 30: 944-953. [34] Ding G, Jiang Q, Li L, et al. Detection of bbb disruption and hemorrhage by gd-dtpa enhanced MRI after embolic stroke in rat[J]. Brain Res, 2006, 1114: 195-203. [35] Haring H P, Berg E L, Tsurushita N, et al. E-selectin appears in nonischemic tissue during experimental focal cerebral ischemia[J]. Stroke, 1996, 27(8): 1 386-1 391 (discussion 1 391-1 392). [36] Okada Y, Copeland B R, Mori E, et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion[J]. Stroke, 1994, 25: 202-211. [37] Hamann G F, Okada Y, del Zoppo G J. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion[J]. J Cereb Blood Flow Metab, 1996, 16: 1 373-1 378. [38] Yablonskiy D A, Haacke E M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime[J]. Magn Reson Med, 1994, 32: 749-763. [39] Haacke E M, Mittal S, Wu Z, et al. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1[J]. AJNR Am J Neuroradiol, 2009, 30: 19-30. [40] Mittal S, Wu Z, Neelavalli J, et al. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 2[J]. AJNR Am J Neuroradiol, 2009, 30: 232-252. [41] Reichenbach J R, Barth M, Haacke E M, et al. High-resolution MR venography at 3.0 tesla[J]. J Comput Assist Tomogr, 2000, 24: 949-957. [42] Reichenbach J R, Venkatesan R, Schillinger D J, et al. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent[J]. Radiology, 1997, 204: 272-277. [43] Haacke E M, Cheng N Y, House M J, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging, 2005, 23: 1-25. [44] Ding G, Jiang Q, Li L, et al. Angiogenesis detected after embolic stroke in rat brain using magnetic resonance T2*wi[J]. Stroke, 2008, 39: 1 563-1 568. [45] Zhang L, Zhang R L, Wang Y, et al. Functional recovery in aged and young rats after embolic stroke: Treatment with a phosphodiesterase type 5 inhibitor[J]. Stroke, 2005, 36: 847-852. [46] Jiang Q, Zhang R L, Zhang Z G, et al. Magnetic resonance imaging characterization of hemorrhagic transformation of embolic stroke in the rat[J]. J Cereb Blood Flow Metab, 2002, 22: 559-568. [47] Li L, Jiang Q, Ding G L, et al. Effects of route administration on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an mri study[J]. J Cereb Blood Flow Metab, 2010, 30: 653-662. [48] Li L, Jiang Q, Zhang L, et al. Ischemic cerebral tissue response to subventricular zone cell transplantation measured by iterative self-organizing data analysis technique algorithm[J]. J Cereb Blood Flow Metab, 2006, 26: 1 366-1 377. [49] Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review[J]. NMR Biomed, 2002, 15: 435-455. [50] Mori S, van Zijl P C. Fiber tracking: Principles and strategies - a technical review[J]. NMR Biomed, 2002, 15: 468-480. [51] Sotak C H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review[J]. NMR Biomed, 2002, 15: 561-569. [52] Watanabe T, Honda Y, Fujii Y, et al. Three-dimensional anisotropy contrast magnetic resonance axonography to predict the prognosis for motor function in patients suffering from stroke[J]. J Neurosurg, 2001, 94 :955-960. [53] Ding G, Jiang Q, Li L, et al. Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats[J]. J Cereb Blood Flow Metab, 2008, 28: 1 440-1 448. [54] Tuch D S, Reese T G, Wiegell M R, et al. Diffusion MRI of complex neural architecture[J]. Neuron, 2003, 40: 885-895. [55] Jensen J H, Helpern J A, Ramani A, et al. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53: 1 432-1 440. [56] Jiang Q, Qu C, Chopp M, et al. MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury[J]. NMR Biomed, 2011, 24: 1 119-1 128. [57] Zhou J, Payen J F, Wilson D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pheffects in MRI[J]. Nat Med, 2003, 9: 1 085-1 090. [58] Sun P Z, Zhou J, Sun W, et al. Detection of the ischemic penumbra using ph-weighted MRI[J]. J Cereb Blood Flow Metab, 2007, 27: 1 129-1 136. [59] Jensen J H, Chandra R. MR imaging of microvasculature[J]. Magn Reson Med, 2000, 44: 224-230. [60] An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging[J]. J Cereb Blood Flow Metab, 2000, 20: 1 225-1 236. |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[3] | LI Peng, JI Yuping, HU Yue. High-quality MR Fingerprinting Reconstruction Based on Manifold Structured Data Priors [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 249-264. |
[4] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[5] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[6] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[7] | SUN Haoyun, WANG Lijia. Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 130-142. |
[8] | WEI Zhihong, KONG Xudong, KONG Yan, YAN Shiju, DING Yang, WEI Xianding, KONG Dong, YANG Bo. Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 143-153. |
[9] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
[10] | CHEN Qun, YANG Zijian, CHENG Xinyi, JIA Siyi, DU Xiaoxia, WANG Mengxing. Application of Magnetic Resonance Imaging Technology in Pediatric Exercise Intervention Research [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 195-204. |
[11] | YANG Jiacheng, WANG Yuanjun. Improved Constrained Spherical Deconvolution for Microstructural Imaging of Brain Gray Matter [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 67-79. |
[12] | WANG Chenxu, GUO Xu, WANG Hui, ZHANG Xin, CHANG Yan, GUO Qingqian, HU Tao, FENG Xiaoyu, YANG Xiaodong. Study of Visual Hybrid Brain-Computer Interface Based on Wearable Magnetoencephalogram [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 405-417. |
[13] | ZENG Xiangzheng, CHEN Junfei, HUANG Chongyang, PI Haiya, CAO Li, HUANG Zhen, GUO Wenlong, FENG Jiwen, LIU Chaoyang. Design and Research of the dDNP Automated Dissolution System [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 382-392. |
[14] | NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468. |
[15] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||