波谱学杂志 ›› 2015, Vol. 32 ›› Issue (2): 181-194.doi: 10.11938/cjmr20150204
彭俊辉,赵德彪,文彬,张志勇*
收稿日期:
2015-02-06
修回日期:
2015-05-08
出版日期:
2015-06-05
在线发表日期:
2015-06-05
作者简介:
*通讯联系人:张志勇,电话:+86-551-63600854,E-mail: zzyzhang@ustc.edu.cn.
基金资助:
The National Key Basic Research Program of China (2013CB910203), the National Natural Science Foundation of China (31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08030102), the Specialized Research Fund for the Doctoral Program of Higher Education (20113402120013).
PENG Jun-hui,ZHAO De-biao,WEN Bin,ZHANG Zhi-yong*
Received:
2015-02-06
Revised:
2015-05-08
Published:
2015-06-05
Online:
2015-06-05
About author:
PENG Jun-hui (1989-), male, born in Jiangxi, PhD., his research focuses on Computational Biology, Tel: +86-551-63600854, E-mail: jhpanda@mail.ustc.edu.cn.
*Corresponding author.: ZHANG Zhi-yong, Tel: +86-551-63600854, E-mail: zzyzhang@ustc.edu.cn.
Supported by:
The National Key Basic Research Program of China (2013CB910203), the National Natural Science Foundation of China (31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08030102), the Specialized Research Fund for the Doctoral Program of Higher Education (20113402120013).
摘要:
近年来,结构生物学研究越来越注重生物大分子复合物的解析,因为许多重要生物学过程都离不开复合物的参与.溶液核磁共振是目前重要的结构解析方法之一.X射线小角散射(SAXS)作为一种新的结构生物学实验手段,近年来发展迅速.SAXS 能提供生物大分子复合物的较低分辨率结构信息,而核磁共振能解析复合物中各个亚基的原子分辨率结构.此外,通过核磁共振还能得到亚基之间的界面、取向以及距离信息.因此近年来通过计算机模拟,整合核磁共振和SAXS 不同分辨率的结构信息,可以用来搭建生物大分子复合物的结构模型.该综述重点介绍这方面的研究进展.
中图分类号:
彭俊辉,赵德彪,文彬,张志勇*. 核磁共振、X 射线小角散射以及计算机模拟相结合构建生物大分子复合物的结构模型[J]. 波谱学杂志, 2015, 32(2): 181-194.
PENG Jun-hui,ZHAO De-biao,WEN Bin,ZHANG Zhi-yong*. Determining Structural Models of Biomolecular Complexes Integrating Nuclear Magnetic Resonance, Small-Angle X-ray Scattering and Computational Simulations[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 181-194.
[1] Robinson C V, Sali A, Baumeister W. The molecular sociology of the cell[J]. Nature, 2007, 450: 973-982.[2] Alberts B. Molecular Biology of the Cell (4th ed)[M]. New York: Garland Science; 2002.[3] Kuehlbrandt W. Cryo-em enters a new era[J]. Elife, 2014, 3.[4] Mertens H D T, Svergun D I. Structural characterization of proteins and complexes using small-angle X-ray solution scattering[J]. J Struct Biol, 2010, 172: 128-141.[5] Graewert M A, Svergun D I. Impact and progress in small and wide angle X-ray scattering (saxs and waxs) [J]. Curr Opin Struc Biol, 2013, 23: 748-754.[6] Ward A B, Sali A, Wilson I A. Integrative structural biology[J]. Science, 2013, 339: 913-915.[7] Dominguez C, Boelens R, Bonvin A M. Haddock: A protein-protein docking approach based on biochemical or biophysical information[J]. J Am Chem Soc, 2003, 125: 1 731-1 737.[8] De Vries S J, van Dijk M, Bonvin A M J J. The haddock web server for data-driven biomolecular docking[J]. Nat Protoc, 2010, 5: 883-897.[9] Russel D, Lasker K, Webb B, et al. Putting the pieces together: Integrative modeling platform software for structure determination of macromolecular assemblies[J]. PLoS Biol, 2012, 10.[10] Zhao D B, Wang X J, Peng J H, et al. Structural investigation of the interaction between the tandem sh3 domains of c-cbl-associated protein and vinculin[J]. J Struct Biol, 2014, 187: 194-205.[11] Zuiderweg E R P. Mapping protein-protein interactions in solution by nmr spectroscopy[J]. Biochemistry-us, 2002, 41: 1-7.[12] Pellecchia M, Montgomery D L, Stevens S Y, et al. Structural insights into substrate binding by the molecular chaperone dnak[J]. Nat Struct Biol, 2000, 7: 298-303.[13] Nguyen C, Haushalter R W, Lee D J, et al. Trapping the dynamic acyl carrier protein in fatty acid biosynthesis[J]. Nature, 2014, 505: 427-431. [14] Chou J J, Gaemers S, Howder B, et al. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles[J]. J Biomol NMR, 2001, 21: 377-382.[15] Ruckert M, Otting G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments[J]. J Am Chem Soc, 2000, 122: 7 793-7 797.[16] Fushman D, Varadan R, Assfalg M, et al. Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements[J]. Prog Nucl Mag Res Spectrosc, 2004, 44: 189-214.[17] Dosset P, Hus J C, Marion D, et al. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings[J]. J Biomol NMR, 2001, 20: 223-231.[18] Valafar H, Prestegard J H. Redcat: A residual dipolar coupling analysis tool[J]. J Magn Reson, 2004, 167: 228-241.[19] Ramirez B E, Bax A. Modulation of the alignment tensor of macromolecules dissolved in a dilute liquid crystalline medium[J]. J Am Chem Soc, 1998, 120: 9 106-9 107.[20] Liu Z, Tang C. Paramagnetic relaxation enhancement——A tool for visualizing transient protein structures[J]. Chinese J Magn Reson, 2011, 28(3): 301-316.[21] Yang Y, Chen J L, Su X C. Paramagnetic labeling of proteins and pseudocontact shift in structural biology[J]. Chinese J Magn Reson, 2014, 31(2): 155-171.[22] Iwahara J, Tang C, Clore G M. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules[J]. J Magn Reson, 2007, 184: 185-195.[23] Clore G M, Iwahara J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes[J]. Chem Rev, 2009, 109: 4 108-4 139.[24] Hass M A S, Ubbink M. Structure determination of protein-protein complexes with long-range anisotropic paramagnetic nmr restraints[J]. Curr Opin Struc Biol, 2014, 24: 45-53.[25] Saio T, Yokochi M, Kumeta H, et al. Pcs-based structure determination of protein-protein complexes[J]. J Biomol NMR, 2010, 46: 271-280.[26] Kay L E. Solution nmr spectroscopy of supra-molecular systems, why bother? A methyl-trosy view[J]. J Magn Reson, 2011, 210: 159-170.[27] Sprangers R, Velyvis A, Kay L E. Solution nmr of supramolecular complexes: Providing new insights into function[J]. Nat Methods, 2007, 4: 697-703.[28] Tugarinov V, Kay L E. An isotope labeling strategy for methyl trosy spectroscopy[J]. J Biomol NMR, 2004, 28: 165-172.[29] Ayala I, Sounier R, Use N, et al. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein[J]. J Biomol NMR, 2009, 43: 111-119.[30] Gans P, Hamelin O, Sounier R, et al. Stereospecific isotopic labeling of methyl groups for nmr spectroscopic studies of high-molecular-weight proteins[J]. Angew Chem Int Ed, 2010, 49: 1 958-1 962.[31] Tugarinov V, Hwang P M, Ollerenshaw J E, et al. Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes[J]. J Am Chem Soc, 2003, 125: 10 420-10 428.[32] Shi L C, Kay L E. Tracing an allosteric pathway regulating the activity of the hslv protease[J]. Proc Natl Acad Sci, 2014, 111: 2 140-2 145.[33] Velyvis A, Kay L E. Measurement of active site ionization equilibria in the 670 kda proteasome core particle using methyl-trosy NMR[J]. J Am Chem Soc, 2013, 135: 9 259-9 262.[34] Velyvis A, Schachman H K, Kay L E. Application of methyl-trosy NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase[J]. J Mol Biol, 2009, 387: 540-547.[35] Lipfert J, Doniach S. Small-angle X-ray scattering from rna, proteins, and protein complexes[J]. Annu Rev Biophys Biomol Struct, 2007, 36: 307-327.[36] Schneidman-Duhovny D, Kim S J, Sali A. Integrative structural modeling with small angle X-ray scattering profiles[J]. BMC Struct Biol, 2012, 12.[37] Putnam C D, Hammel M, Hura G L, et al. X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution[J]. Q Rev Biophys, 2007, 40: 191-285.[38] Rambo R P, Tainer J A. Characterizing flexible and intrinsically unstructured biological macromolecules by sas using the porod-debye law[J]. Biopolymers, 2011, 95: 559-571.[39] Forster F, Webb B, Krukenberg K A, et al. Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies[J]. J Mol Biol, 2008, 382: 1 089-1 106.[40] Svergun D I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing[J]. Biophys J, 1999, 76(6): 2 879-2 886; 1999, 77(5): 2 896.[41] Franke D, Svergun D I. Dammif, a program for rapid ab-initio shape determination in small-angle scattering[J]. J Appl Crystallogr, 2009, 42: 342-346.[42] Svergun D I, Petoukhov M V, Koch M H J. Determination of domain structure of proteins from X-ray solution scattering[J]. Biophys J, 2001, 80: 2 946-2 953.[43] Zheng W J, Doniach S. Fold recognition aided by constraints from small angle X-ray scattering data[J]. Protein Eng Des Sel, 2005, 18: 209-219.[44] Petoukhov M V, Svergun D I. Global rigid body modeling of macromolecular complexes against small-angle scattering data[J]. Biophys J, 2005, 89: 1 237-1 250.[45] Bernado P, Mylonas E, Petoukhov M V, et al. Structural characterization of flexible proteins using small-angle X-ray scattering[J]. J Am Chem Soc, 2007, 129: 5 656-5 664.[46] Zheng W J, Tekpinar M. Accurate flexible fitting of high-resolution protein structures to small-angle X-ray scattering data using a coarse-grained model with implicit hydration shell[J]. Biophys J, 2011, 101: 2 981-2 991.[47] Wen B, Peng J H, Zuo X B, et al. Characterization of protein flexibility using small-angle X-ray scattering and amplified collective motion simulations[J]. Biophys J, 2014, 107: 956-964.[48] Guinier A. La diffraction des rayons X aux très petits angles: Application à l'étude de phénomènes ultramicroscopiques[J]. Ann Phys, 1939, 12: 161-237.[49] Svergun D I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria[J]. Appl Crystallogr, 1992, 25: 495-503.[50] Fischer H, Neto M D, Napolitano H B, et al. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale[J]. J Appl Crystallogr, 2010, 43: 101-109.[51] Svergun D, Barberato C, Koch M H J. CRYSOL — A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates[J]. J Appl Crystallogr, 1995, 28: 768-773.[52] Grishaev A, Wu J, Trewhella J, et al. Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and nmr data[J]. J Am Chem Soc, 2005, 127: 16 621-16 628.[53] Yang S, Park S, Makowski L, et al. A rapid coarse residue-based computational method for X-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes[J]. Biophys J, 2009, 96: 4 449-4 463.[54] Grishaev A, Guo L A, Irving T, et al. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling[J]. J Am Chem Soc, 2010, 132: 15 484-15 486.[55] Schneidman-Duhovny D, Hammel M, Sali A. Foxs: A web server for rapid computation and fitting of saxs profiles[J]. Nucleic Acids Res, 2010, 38: W540-W544.[56] Schwieters C D, Suh J Y, Grishaev A, et al. Solution structure of the 128 kda enzyme i dimer from escherichia coli and its 146 kda complex with hpr using residual dipolar couplings and small- and wide-angle X-ray scattering[J]. J Am Chem Soc, 2010, 132: 13 026-13 045.[57] Chacon P, Moran F, Diaz J F, et al. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm[J]. Biophys J, 1998, 74: 2 760-2 775.[58] Kozin M B, Svergun D I. Automated matching of high- and low-resolution structural models[J]. J Appl Crystallogr, 2001, 34: 33-41.[59] Wriggers W, Milligan R A, McCammon J A. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy[J]. J Struct Biol, 1999, 125: 185-195.[60] Wriggers W, Chacon P. Using situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering[J]. J Appl Crystallogr, 2001, 34: 773-776.[61] Konarev P V, Petoukhov M V, Volkov V V, et al. Atsas 2.1, a program package for small-angle scattering data analysis[J]. J Appl Crystallogr, 2006, 39: 277-286.[62] Pons C, D'Abramo M, Svergun D I, et al. Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data[J]. J Mol Biol, 2010, 403: 217-230.[63] Schneidman-Duhovny D, Hammel M, Sali A. Macromolecular docking restrained by a small angle X-ray scattering profile[J]. J Struct Biol, 2011, 173: 461-471.[64] Webb B, Lasker K, Schneidman-Duhovny D, et al. Modeling of proteins and their assemblies with the integrative modeling platform[J]. Methods Mol Biol, 2011, 781: 377-397.[65] de Vries S J, Bonvin A M. Cport: A consensus interface predictor and its performance in prediction-driven docking with HADDOCK[J]. PLoS One, 2011, 6(3): e17695.[66] Gorba C, Miyashita O, Tama F. Normal-mode flexible fitting of high-resolution structure of biological molecules toward one-dimensional low-resolution data[J]. Biophys J, 2008, 94: 1 589-1 599.[67] Pelikan M, Hura G L, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering[J]. Gen Physiol Biophys, 2009, 28: 174-189.[68] Yang S C, Blachowicz L, Makowski L, et al. Multidomain assembled states of hck tyrosine kinase in solution[J]. Proc Natl Acad Sci, 2010, 107: 15 757-15 762.[69] Ró?ycki B, Kim Y C, Hummer G. Saxs ensemble refinement of escrt-iii chmp3 conformational transitions[J]. Structure, 2011, 19: 109-116.[70] Carisey A, Ballestrem C. Vinculin, an adapter protein in control of cell adhesion signalling[J]. Eur J Cell Biol, 2011, 90: 157-163.[71] Borgon R A, Vonrhein C, Bricogne G, et al. Crystal structure of human vinculin[J]. Structure, 2004, 12: 1 189-1 197.[72] Baumann C A, Ribon V, Kanzaki M, et al. Cap defines a second signalling pathway required for insulin-stimulated glucose transport[J]. Nature, 2000, 407: 202-207.[73] Zhang M, Liu J, Cheng A, et al. Identification of cap as a costameric protein that interacts with filamin c[J]. Mol Biol Cell, 2007, 18: 4 731-4 740.[74] Mandai K, Nakanishi H, Satoh A, et al. Ponsin/sh3p12: An 1-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions[J]. J Cell Biol, 1999, 144: 1 001-1 017. [75] Eswar N, Webb B, Marti-Renom M A, et al. Comparative protein structure modeling using MODELLER: Chapter 5: Unit 5.6[M]. Curr Protoc Bioinformatics, John Wiley & Sons Inc, 2006.[76] Brunger A T. Version 1.2 of the crystallography and NMR system[J]. Nat Protoc, 2007, 2: 2 728-2 733.[77] Schwieters C D, Kuszewski J J, Tjandra N, et al. The xplor-nih NMR molecular structure determination package[J]. J Magn Reson, 2003, 160: 65-73.[78] Takamoto K, Chance M R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes[J]. Annu Rev Bioph Biom Struct, 2006, 35: 251-276.[79] Vandermarliere E, Stes E, Gevaert K, et al. Resolution of protein structure by mass spectrometry[J]. Mass Spectrom Rev, 2014.[80] Lasker K, Phillips J L, Russel D, et al. Integrative structure modeling of macromolecular assemblies from proteomics data[J]. Mol Cell Proteomics, 2010, 9: 1 689-1 702.[81] Alber F, Dokudovskaya S, Veenhoff L M, et al. Determining the architectures of macromolecular assemblies[J]. Nature, 2007, 450 :683-694. |
[1] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
[2] | 沈志强, 邓亚博, 杨培菊, 胡霄雪, 黄晓卷, 许传芝, 宋焕玲. 一种用于光诱导反应体系的原位NMR装置的设计与应用[J]. 波谱学杂志, 2025, 42(1): 22-33. |
[3] | 刘庭伟, 彭博文, 徐雅洁, 王亚, 王峰, 郁朋, 杨晓冬. 一种用于磁共振波谱仪的主动匀场电源设计[J]. 波谱学杂志, 2024, 41(2): 117-127. |
[4] | 王峰, 刘庭伟, 徐雅洁, 郁朋, 王亚, 彭博文, 杨晓冬. 一种带外部锁场通道的小型化核磁共振射频探头设计[J]. 波谱学杂志, 2023, 40(3): 332-340. |
[5] | 王远方,王小花,舒畅,张许,刘买利,曾丹云. 溶液中ATAD2溴结构域聚集行为的研究[J]. 波谱学杂志, 2023, 40(2): 169-178. |
[6] | 赵昶,龚洲. 顺磁核磁共振技术研究蛋白质遭遇复合物的动态结构[J]. 波谱学杂志, 2023, 40(2): 148-157. |
[7] | 裴云山, 张偲, 刘晓黎, 成凯, 张则婷, 李从刚. 蛋白质二硫键异构酶与α-突触核蛋白的相互作用及对其聚集的影响[J]. 波谱学杂志, 2022, 39(4): 381-392. |
[8] | 胡涵,王伟宇,徐君,邓风. Pd-Sn双金属催化剂催化1, 3-丁二烯加氢反应的仲氢诱导极化研究[J]. 波谱学杂志, 2022, 39(2): 133-143. |
[9] | 徐倩,陈朗,胡翔颖,李从刚,刘乙祥,姜凌. T69E模拟磷酸化修饰对Bcl-2与Nur77相互作用的影响[J]. 波谱学杂志, 2022, 39(1): 87-95. |
[10] | 胡晓东,蓝文贤,王春喜,曹春阳. 靶向肿瘤因子c-MYC基因启动区G4-DNA的小分子药物设计及核磁共振研究进展[J]. 波谱学杂志, 2021, 38(4): 503-513. |
[11] | 王崇武,黄曦,石磊,陈世桢,周欣. 组织蛋白酶B响应的超极化129Xe MRI探针对肺癌细胞的超灵敏探测[J]. 波谱学杂志, 2021, 38(3): 336-344. |
[12] | 吴嘉敏,贺玉成,徐征,朱延河,姜文正. 用于土壤水分测量的磁共振射频线圈宽频匹配方法[J]. 波谱学杂志, 2021, 38(3): 414-423. |
[13] | 王子豪,徐赫,汪涛,杨善中,丁运生,魏海兵. 外型和内型C-2位单取代降冰片烯衍生物的核磁共振波谱研究[J]. 波谱学杂志, 2021, 38(3): 323-335. |
[14] | 余锦波,张偲,张则婷,徐国华,李从刚. Alpha-突触核蛋白与完整线粒体相互作用的NMR研究[J]. 波谱学杂志, 2021, 38(2): 164-172. |
[15] | 赵心怡,韩冬,罗红军,沈文斌,杨功俊. 德拉沙星葡甲胺波谱学数据解析[J]. 波谱学杂志, 2021, 38(2): 268-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||