[1] KOCH C, REID R C. Observatories of the mind[J]. Nature, 2012, 483:397-398. [2] LLINAS R. The intrinsic electrophysiological properties of mammalian neurons:insights into central nervous system function[J]. Science, 1988, 242(4886):1654-1664. [3] WU R Q, LI B, LIU Y, et al. Current state and future of optogenetic functional magnetic resonance imaging[J]. Chinese J Magn Reson, 2014, 31(2):295-305. 吴瑞琪, 李博, 刘悦, 等. 光激活磁共振脑功能成像的研究现状及前景[J]. 波谱学杂志, 2014, 31(2):295-305. [4] ZHU X T, HE X B, LIU Y, et al. A convenient semi-automatic method for analyzing brain sections:registration, segmentation and cell counting[J]. Chinese J Magn Reson, 2018, 35(2):133-140. 朱续涛, 何晓斌, 刘悦, 等. 一种简易的脑片图像的半自动区域划分及细胞计数方法[J]. 波谱学杂志, 2018, 35(2):133-140. [5] JEFFERIS G S, LIVET J. Sparse and combinatorial neuron labelling[J]. Curr Opin Neurobiol, 2012, 22(1):101-110. [6] NERN A, PFEIFFER B D, RUBIN G M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system[J]. Proc Natl Acad Sci U S A, 2015, 112(22):E2967-E2976. [7] WU H, WILLIAMS J, NATHANS J. Morphologic diversity of cutaneous sensory afferents revealed by genetically directed sparse labeling[J]. eLife, 2012, 1:e00181. [8] ECONOMO M N, CLACK N G, LAVIS L D, et al. A platform for brain-wide imaging and reconstruction of individual neurons[J]. eLife, 2016, 5:e10566. [9] HOLTMAAT A, BONHOEFFER T, CHOW D K, et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window[J]. Nat Protoc, 2009, 4(8):1128-1144. [10] FENG G, MELLOR R H, BERNSTEIN M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP[J]. Neuron, 2000, 28(1):41-51. [11] LU X H, YANG X W. Genetically-directed sparse neuronal labeling in BAC transgenic mice through mononucleotide repeat frameshift[J]. Sci Rep, 2017, 7:43915. [12] AKO R, WAKIMOTO M, EBISU H, et al. Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain[J]. Mol Cell Neurosci, 2011, 48(3):246-257. [13] LUO W, MIZUNO H, IWATA R, et al. Supernova:A versatile vector system for single-cell labeling and gene function studies in vivo[J]. Sci Rep, 2016, 6:35747. [14] MADISEN L, ZWINGMAN T A, SUNKIN S M, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain[J]. Nat Neurosci, 2010, 13(1):133-140. [15] KUHLMAN S J, HUANG Z J. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression[J]. PLoS One, 2008, 3(4):e2005. [16] LAMMEL S, LIM B K, RAN C, et al. Input-specific control of reward and aversion in the ventral tegmental area[J]. Nature, 2012, 491(7423):212-217. [17] KIM C K, YANG S J, PICHAMOORTHY N, et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain[J]. Nat Methods, 2016, 13(4):325-328. [18] LUO M. The nucleocapsid of vesicular stomatitis virus[J]. Sci China Life Sci, 2012, 55(4):291-300. [19] HABERL M G, VIANA DA SILVA S, GUEST J M, et al. An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology[J]. Brain Struct Funct, 2015, 220(3):1369-1379. [20] VAN DEN POL A N, OZDUMAN K, WOLLMANN G, et al. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression[J]. J Comp Neurol, 2009, 516(6):456-481. [21] BEIER K, CEPKO C. Viral tracing of genetically defined neural circuitry[J]. J Vis Exp, 2012, 68:4253. [22] GREEN T J, ZHANG X, WERTZ G W, et al. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex[J]. Science, 2006, 313(5785):357-360. [23] CHEN L Y, YAN Q, LU G L, et al. Several residues within the N-terminal arm of vesicular stomatitis virus nucleoprotein play a critical role in protecting viral RNA from nuclease digestion[J]. Virology, 2015, 478:9-17. [24] STOJDL D F, LICHTY B D, TENOEVER B R, et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents[J]. Cancer Cell, 2003, 4(4):263-275. [25] FANG X K, ZHANG S K, SUN X D, et al. Evaluation of attenuated VSVs with mutated M or/and G proteins as vaccine vectors[J]. Vaccine, 2012, 30(7):1313-1321. [26] GENOVE G, DEMARCO U, XU H Y, et al. A new transgene reporter for in vivo magnetic resonance imaging[J]. Nat Med, 2005, 11(4):450-454. |