[1] |
WEI Y, WANG C H, ZHANG Y, et al. MRI manifestations of adult-onset neuronal intranuclear inclusion disease[J]. Journal of Zhengzhou University (Medical Sciences), 2024, 59(3): 405-408.
|
|
魏莹, 王彩鸿, 张勇, 等. 成人型神经元核内包涵体病脑MRI表现[J]. 郑州大学学报(医学版), 2024, 59(3): 405-408.
|
[2] |
HE W G, WANG W P, LI Y J, et al. MR findings of adult neuronal intranuclear inclusion disease: report of 8 cases and literature review[J]. Radiol Practice, 2022, 37(11): 1343-1346.
|
|
贺伟光, 王维平, 李又洁, 等. 成人型神经元核内包涵体病的颅脑MR表现[J]. 放射学实践, 2022, 37(11): 1343-1346.
|
[3] |
CAO Y, WU J, YUE Y, et al. Expanding the clinical spectrum of adult-onset neuronal intranuclear inclusion disease[J]. Acta Neurol Belg, 2022, 122(3): 647-658.
|
[4] |
SONE J, MORI K, INAGAKI T, et al. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease[J]. Brain, 2016, 139: 3170-3186.
pmid: 27797808
|
[5] |
SONE J, TANAKA F, KOIKE H, et al. Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease[J]. Neurology, 2011, 76: 1372-1376.
doi: 10.1212/WNL.0b013e3182166e13
pmid: 21411744
|
[6] |
ISHIURA H, SHIBATA S, YOSHIMURA J, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease[J]. Nat Genet, 2019, 51: 1222-1232.
doi: 10.1038/s41588-019-0458-z
pmid: 31332380
|
[7] |
ZHU R, QU J, XU G, et al. Clinical and multimodal imaging features of adult-onset neuronal intranuclear inclusion disease[J]. Neurol Sci, 2024, 45: 5795-5805.
doi: 10.1007/s10072-024-07699-y
pmid: 39023713
|
[8] |
CHEN M, GENG C, LI Y X, et al. Automatic detection for cerebral aneurysms in TOF-MRA images based on fuzzy label and deep learning[J]. Chinese J Magn Reson, 2022, 39(3): 267-277.
|
|
陈萌, 耿辰, 李郁欣, 等. 基于模糊标签和深度学习的TOF-MRA影像脑动脉瘤自动检测[J]. 波谱学杂志, 2022, 39(3): 267-277.
doi: 10.11938/cjmr20223004
|
[9] |
QIAN C Y, WANG Y J. Research progress on imaging classification of Alzheimer’s disease based on deep learning[J]. Chinese J Magn Reson, 2023, 40(2): 220-238.
|
|
钱程一, 王远军. 基于深度学习的阿尔兹海默症影像学分类研究进展[J]. 波谱学杂志, 2023, 40(2): 220-238.
doi: 10.11938/cjmr20223013
|
[10] |
CALABRESE E, RUDIE J D, RAUSCHECKER A M, et al. Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma[J]. Neurooncol Adv, 2022, 4(1): vdac060.
|
[11] |
XUE P Y, GENG C, LI Y X, et al. A Classification Method for Cerebral Aneurysms in TOF-MRA Based on Improved 3D ResNet50 Model[J]. Chinese J Magn Reson, 2025, 42(1): 56-66.
|
|
薛培阳, 耿辰, 李郁欣, 等. 基于改进的3D ResNet50模型的TOF-MRA脑动脉瘤分类方法[J]. 波谱学杂志, 2025, 42(1): 56-66.
doi: 10.11938/cjmr20243119
|
[12] |
AZIZI S, MUSTAFA B, RYAN F, et al. Big self-supervised models advance medical image classification[C]// International Conference on Computer Vision, 2021: 3458-3468.
|
[13] |
GHESU F C, GEORGESCU B, MANSOOR A, et al. Contrastive self-supervised learning from 100 million medical images with optional supervision[J]. J Med Imaging (Bellingham), 2022, 9(6): 064503.
|
[14] |
ZHU Z Y, ZHAO S G. Research on brain tumor medical image classification based on diffusion self-supervised representation learning[J]. Computer Science and Application, 2024, 14(4): 133-140.
|
|
朱泽宇, 赵曙光. 基于扩散模型自监督表征学习的脑瘤医学图像分类研究[J]. 计算机科学与应用, 2024, 14(4): 133-140.
|
[15] |
WANG N, LIN S H, QI F L, et al. Self-supervised Learning for Multi-modal Medical Image Segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2025, 37(3): 474-483.
|
|
王楠, 林绍辉, 齐福霖, 等. 基于自监督学习的医学影像异常检测[J]. 计算机辅助设计与图形学学报, 2025, 37(3): 474-483.
|
[16] |
XIE Y, ZHANG J, XIA Y, et al. UniMiSS: universal medical self-supervised learning via breaking dimensionality barrier[C]// European Conference on Computer Vision, 2022: 558-575.
|
[17] |
GONG Y, KHURANA S, ROUDITCHENKO A, et al. CMKD: CNN/Transformerbased cross-model knowledge distillation for audio classification[J]. arXiv: abs/2203.06760, 2022.
|
[18] |
SINGH P, SIZIKOVA E, CIRRONE J. CASS: Cross architectural self-supervision for medical image analysis[J]. arXiv: abs/2206.04170, 2022.
|
[19] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Conference Vision and Pattern Recognition, 2016: 770-778.
|
[20] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]// International Conference on Learning Representations, 2020.
|
[21] |
HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[C]// Conference Vision and Pattern Recognition, 2021: 16000-16009.
|