波谱学杂志 ›› 2025, Vol. 42 ›› Issue (2): 154-163.doi: 10.11938/cjmr20243136cstr: 32225.14.cjmr20243136

• 研究论文 • 上一篇    下一篇

基于交叉自监督和DWI的NIID智能诊断方法

曹飞1,2,*(), 徐芊芊1, 陈浩1, 祖洁1, 李晓文1, 田锦1, 鲍磊1   

  1. 1.徐州医科大学附属医院,江苏 徐州 221000
    2.中国矿业大学 信息与控制工程学院,江苏 徐州 221000
  • 收稿日期:2024-11-05 出版日期:2025-06-05 在线发表日期:2024-12-10
  • 通讯作者: *Tel: 18796248083, E-mail: caofeicz@163.com.
  • 基金资助:
    徐州医科大学附属医院自然科学基金(2020GB001)

An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI

CAO Fei1,2,*(), XU Qianqian1, CHEN Hao1, ZU Jie1, LI Xiaowen1, TIAN Jin1, BAO Lei1   

  1. 1. The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
    2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221000, China
  • Received:2024-11-05 Published:2025-06-05 Online:2024-12-10
  • Contact: *Tel: 18796248083, E-mail: caofeicz@163.com.

摘要:

神经元核内包涵体病(Neuronal Intranuclear Inclusion Disease,NIID)作为一种罕见的神经系统变性疾病,其诊断主要是通过扩散加权成像(Diffusion Weighted Imaging,DWI)进行,但受限于医生的视觉和经验很容易发生漏诊误诊.本文提出一种基于交叉自监督的深度学习方法,并构建CO-ResNet50和CO-ViT模型用于NIID的智能辅助诊断,该方法采用自监督学习且有效结合ResNet50和ViT网络特点,能够提高模型特征提取能力.实验对249例DWI数据进行预处理,并将其划分为204例训练集和45例测试集,测试结果表明,CO-ResNet50模型表现最佳,准确率为95.49%,精确率为95.51%,召回率为95.44%,F1分数为0.954 7,AUC为0.989 7,能够为医生临床诊断NIID提供支持.

关键词: 磁共振成像, 神经元核内包涵体病, 自监督学习, 智能诊断, 深度学习

Abstract:

Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease primarily diagnosed through diffusion-weighted imaging (DWI). However, the limitation of human visual interpretation and clinical experience can lead to inaccuracies in diagnosis. This research proposes a deep learning method based on cross self-supervision, alongside the construction of Co-ResNet50 and CO-ViT models for intelligent auxiliary diagnosis of NIID. This method uses self-supervised learning and effectively combines the characteristics of ResNet50 and ViT networks to improve the model’s feature extraction capabilities. The experiment preprocessed 249 DWI data and divided them into 204 training sets and 45 test sets. The results reveal that the CO-ResNet50 model has the best performance, with an accuracy of 95.49%, precision of 95.51%, recall of 95.44%, F1 score of 0.954 7, and AUC of 0.989 7. These findings underscore the model's potential to provide support for clinical NIID diagnosis.

Key words: MRI, NIID, self-supervised learning, intelligent diagnosis, deep learning

中图分类号: