波谱学杂志

• •    

HDX-NMR与HDX-MS在蛋白质结构动力学研究中的应用与进展

张媛媛1,汪鹏程1,李滔1,胡锐1,2*,杨运煌1,2,刘买利1,2   

  1. 1. 中国科学院生物磁共振分析重点实验室,磁共振波谱与成像全国重点实验室,武汉磁共振中心(中国科学院 精密测量科学与技术创新研究院),湖北 武汉 430071;2. 中国科学院大学,北京 100049
  • 收稿日期:2025-06-13 修回日期:2025-09-02 接受日期:2025-09-03
  • 通讯作者: 胡锐 E-mail:hurui@apm.ac.cn
  • 基金资助:
    中国科学院基础与交叉前沿科研 B类先导专项(XDB0540000);国家自然科学基金资助项目(22374155, 22327901)

Development and Applications of HDX-NMR and HDX-MS in Protein Structure and Dynamics Research

ZHANG Yuanyuan1,WANG Pengcheng1,LI Tao1,HU Rui1,2*,YANG Yunhuang1,2,LIU Maili1,2   

  1. 1. CAS Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2. University of Chinese Academy of Science, Beijing 100049, China
  • Received:2025-06-13 Revised:2025-09-02 Accepted:2025-09-03
  • Contact: HU Rui E-mail:hurui@apm.ac.cn

摘要: 氢氘交换核磁共振(HDX-NMR)和氢氘交换质谱(HDX-MS)是研究蛋白质结构与动力学的重要工具,近年来在解析蛋白质构象变化方面得到了广泛应用。HDX-NMR 通过直接检测氢氘交换后的 NMR 信号,在单氨基酸分辨率水平上提供蛋白质的动态信息,特别适用于研究缓慢交换区域和长时间尺度的构象变化。HDX-MS 则结合了氢氘交换与高分辨率质谱分析的优势,能够在接近生理条件下测定蛋白质的溶液态结构,适用于大分子复合体和膜蛋白等复杂体系。相比于传统的结构生物学技术(X 射线晶体学、冷冻电镜),两者均具有独特的优势,其中 HDX-MS 以高灵敏度和低样品需求量见长,而 HDX-NMR 在位点分辨率和动力学分析方面更具优势。近年来,HDX-MS 和 HDX-NMR 的数据处理方法和实验技术不断优化,使其在蛋白质构象变化、药物筛选、蛋白折叠等领域展现出更广阔的应用前景。本文综述了 HDX-MS 和 HDX-NMR 的基本原理、实验流程及数据分析方法,系统比较了两者在蛋白质研究中的异同。此外,探讨 HDX-MS 与 HDX-NMR 的互补性及其与其他结构生物学技术的整合应用,并展望其未来发展的潜在方向,以期为相关研究提供有价值的参考。

关键词: 氢氘交换核磁共振, 氢氘交换质谱, 蛋白质, 结构动力学

Abstract: Hydrogen-deuterium exchange nuclear magnetic resonance (HDX-NMR) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) are important tools for studying protein structure and dynamics. In recent years, they have been widely applied in elucidating protein conformational changes. HDX-NMR, by directly detecting NMR signals post hydrogen-deuterium exchange, offers dynamic information about proteins at the single amino acid resolution, making it particularly suitable for investigating slowly exchanging regions and conformational changes over extended time scales. Conversely, HDX-MS combines the advantages of hydrogen-deuterium exchange with high-resolution mass spectrometric analysis, allowing for the determination of the solution-state structure of proteins under near-physiological conditions and proving effective for complex systems such as macromolecular complexes and membrane proteins. Both techniques boast unique advantages compared to traditional structural biology methods (e.g., X-ray crystallography and cryo-electron microscopy). Notably, HDX-MS is characterized by its high sensitivity and minimal sample requirements, while HDX-NMR excels in site resolution and kinetic analysis. Recently, enhancements in data processing methodologies and experimental techniques for HDX-MS and HDX-NMR have broadened their application prospects in areas such as protein conformational changes, drug screening, and protein folding. This review outlines the fundamental principles, experimental protocols, and data analysis methods associated with HDX-MS and HDX-NMR, systematically comparing their similarities and differences in protein research. Furthermore, we discuss the complementary nature of HDX-MS and HDX-NMR, as well as their integration with other structural biology techniques, and provide insights into potential future directions for development, aiming to offer valuable references for related research.

Key words: HDX-NMR, HDX-MS, Protein, Structural Dynamics.