波谱学杂志 ›› 2015, Vol. 32 ›› Issue (2): 308-317.doi: 10.11938/cjmr20150213
魏淑怡,潘韻如,曾天生,陈金榜*
收稿日期:
2015-03-02
修回日期:
2015-05-08
出版日期:
2015-06-05
在线发表日期:
2015-06-05
作者简介:
*通讯联系人:陈金榜,电话:+886-2-27899162, E-mail: bmchinp@ibms.sinica.tw.
基金资助:
WEI Shu-yi,PAN Yun-ru,TSENG Tien-sheng,CHEN Chin-pan*
Received:
2015-03-02
Revised:
2015-05-08
Published:
2015-06-05
Online:
2015-06-05
About author:
*Corresponding author: CHEN Chin-pan, Tel: +886-2-27899162, E-mail: bmchinp@ibms.sinica.tw.
Supported by:
摘要:
亚碲酸盐是碲的一含氧阴离子,其对微生物具高度毒性.在许多的致病菌内已经鉴定出数个抗亚碲酸盐基因(terZABCDEF).之前,作者解出抗亚碲酸盐蛋白质TerD液体核磁共振结构并指出在细菌内TerD 可能是一钙离子传感器.TerZ 与TerD 在序列上有40%相同性,其包括了一额外的9 氨基酸片段L36-N44,并且显示出非常弱的钙离子亲合性.有趣的是,少了额外片段的TerZdel 拥有与TerD 可比较的钙离子亲合性.根据化学位移指数及同源模拟结果,此额外片段为一无二级结构且延伸的loop,可能扰乱钙离子结合位置的构形,同时也阻碍了钙离子接近其结合位置,因此大大降低钙离子亲合性.
中图分类号:
魏淑怡, 潘韻如, 曾天生, 陈金榜. 克雷伯氏肺炎杆菌内抗亚碲酸盐蛋白质TerZ 延伸环降低对钙离子亲合性[J]. 波谱学杂志, 2015, 32(2): 308-317.
WEI Shu-yi, PAN Yun-ru, TSENG Tien-sheng, CHEN Chin-pan?. The Extended Loop Reduces Ca2+-Binding Affinity on the Tellurite Resistance Protein TerZ from Klebsiella penumoniae[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 308-317.
[1] Taylor D E. Bacterial tellurite resistance[J]. Trends Microbiol, 1999, 7(3): 111-115.[2] Chasteen T G, Fuentes D E, Tantalean J C, et al. Tellurite: history, oxidative stress, and molecular mechanisms of resistance[J]. FEMS Microbiol Rev, 2009, 33(4): 820-832.[3] Walter E G, Taylor D E. Plasmid-mediated resistance to tellurite: expressed and cryptic[J]. Plasmid, 1992, 27(1): 52-64.[4] Chen Y T, Chang H Y, Lai Y C, et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43[J]. Gene, 2004, 337: 189-198.[5] Whelan K F, Colleran E, Taylor D E. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478[J]. J Bacteriol, 1995, 177(17): 5 016-5 027.[6] Valkovicova L, Vavrova S M, Mravec J, et al. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster “ter” from pathogenic Escherichia coli[J]. Antonie Van Leeuwenhoek, 2013, 104(6): 899-911.[7] Anantharaman V, Iyer L M, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing[J]. Mol Biosyst, 2012, 8(12): 3 142-3 165. [8] Pan Y R, Lou Y C, Seven A B, et al. NMR structure and calcium-binding properties of the tellurite resistance protein TerD from Klebsiella pneumoniae[J]. J Mol Biol, 2011, 405(5): 1 188-1 201.[9] Pan Y R. Structure as a Guide to Function: NMR Studies on Tellurite Resistance Proteins from Klebsiella pneumoniae[D]. Hsinchu: Institute of Bioinformatics and Structural Biology, College of Life Science, “National Tsing Hua University”, 2011.[10] Wu K M, Li L H, Yan J J, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis[J]. J Bacteriol, 2009, 191(14): 4 492-4 501.[11] Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling[J]. Biophys J, 2000, 78(3): 1 606-1 619.[12] Delaglio F, Grzesiek S, Vuister G W, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes[J]. J Biomol NMR, 1995, 6(3): 277-293.[13] Johnson B A, Blevins R A. NMR View: A computer program for the visualization and analysis of NMR data[J]. J Biomol NMR, 1994, 4(5): 603-614.[14] Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Res, 2014, 42(W1): W252-W258.[15] Sali A, Blundell T L. Comparative protein modelling by satisfaction of spatial restraints[J]. J Mol Biol, 1993, 234(3): 779-815.[16] Morris A L, MacArthur M W, Hutchinson E G., et al. Stereochemical quality of protein structure coordinates[J]. Proteins, 1992, 12(4): 345-364.[17] Laskowski R A, Macarthur M W, Moss D S, et al. Procheck: a program to check the stereochemical quality of protein structures[J]. J Appl Cryst, 1993, 26(0), 283-291.[18] Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks[J]. J Biomol NMR, 2013, 56(3): 227-241. |
[1] | 刘颖, 袁斌华, 章浩伟. 便携式磁共振多源射频脉冲发生器设计[J]. 波谱学杂志, 2025, 42(3): 285-298. |
[2] | 江超超, 姚守权, 徐俊成, 蒋瑜. 宽频磁共振微线圈设计[J]. 波谱学杂志, 2025, 42(3): 299-307. |
[3] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
[4] | 隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248. |
[5] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
[6] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
[7] | 李科言, 程鑫, 陈俊飞, 曹丽, 黄臻, 刘朝阳. 用于低场NMR的低噪声前置放大器研制[J]. 波谱学杂志, 2025, 42(3): 321-333. |
[8] | 汤世豪, 杨谨毓, 徐雅洁, 王亚, 彭博文, 高宇昊, 杨晓冬. 一种用于低场磁共振波谱仪的圆极化线圈设计[J]. 波谱学杂志, 2025, 42(3): 308-320. |
[9] | 何丰丞 李明道 吕兴龙 姚守权 蒋瑜. 掌上型核磁共振谱仪控制台软件设计[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 郑佳琪 王意浓 元思文 尹田鹏. 4-异丙氧基-1-(三氟乙酰基)萘的结构解析和NMR数据完整归属[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 陈博, 刘泉, 马蕾, 陈淑年, 贾亚琦, 朱斌, 郭俊旺. 基于Simulink的连续波电子顺磁共振信号处理与检测仿真研究[J]. 波谱学杂志, 2025, 42(2): 174-183. |
[12] | 顾佳佳, 王远军. 混合注意力和多尺度模块的阿尔茨海默病分类方法[J]. 波谱学杂志, 2025, 42(2): 103-116. |
[13] | 左冰玉, 石丽莉, 宋佳, 赵阳, 李倩. 雌激素、肿瘤标志物联合DCE-MRI在宫颈癌诊断及临床分期中的应用[J]. 波谱学杂志, 2025, 42(2): 164-173. |
[14] | 孟靖欣, 王远军. 基于扩散磁共振的大脑浅表白质纤维束研究进展[J]. 波谱学杂志, 2025, 42(2): 205-220. |
[15] | 陈静聪, 冉凤伟, 章浩伟, 刘颖. 基于DCGAN的脑膜瘤与听神经瘤检测模型优化方法研究[J]. 波谱学杂志, 2025, 42(2): 117-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||