波谱学杂志

• •    

基于成像物理模型与流形结构的自监督磁共振指纹参数量化方法

李晓迪,纪雨萍,胡悦*   

  1. 哈尔滨工业大学,电子与信息工程学院,哈尔滨 150001
  • 收稿日期:2025-06-27 修回日期:2025-08-16 出版日期:2025-08-21 在线发表日期:2025-08-21
  • 通讯作者: 胡悦 E-mail:huyue@hit.edu.cn

Self-supervised magnetic resonance fingerprint parameter quantization method based on imaging physical model and manifold structure

LI Xiaodi,JI Yuping,HU Yue*   

  1. School of Electronic and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2025-06-27 Revised:2025-08-16 Published:2025-08-21 Online:2025-08-21
  • Contact: HU Yue E-mail:huyue@hit.edu.cn

摘要: 磁共振指纹是一种高效的多参数定量成像技术,但传统方法依赖信号字典进行参数量化,存在离散化误差大与匹配效率低下等问题.针对现有监督学习方法依赖伪标签、缺乏物理可解释性的局限性,本文提出了一种融合成像物理模型与流形结构建模的自监督磁共振指纹参数量化方法.该方法通过布洛赫方程驱动的自监督物理一致性学习获得可靠的无标签约束,并结合流形结构驱动的知识蒸馏,将长帧的特征迁移至短帧模型,实现物理约束与结构先验的联合优化,从而同时提升无标签条件下的精度与效率.实验验证了本方法在准确性与鲁棒性方面的优势,为实现高效可靠的磁共振指纹参数估计提供了新思路.

关键词: 磁共振指纹成像, 自监督学习, 参数量化, 成像物理模型, 流形结构

Abstract: Magnetic resonance fingerprint is an efficient multi-parameter quantitative imaging technology, but the traditional reliance on signal dictionaries for parameter quantization has problems such as large discretization errors and low matching efficiency. In view of the limitations of existing supervised learning methods that rely on pseudo-labels and lack physical interpretability, this paper proposes a self-supervised parameter quantization method that integrates imaging physical models and manifold structure modeling. This method obtains reliable unlabeled constraints through self-supervised physical consistency learning driven by Bloch equations, and combines knowledge distillation driven by manifold structure to migrate the features of long frames to short frame models, realizing the joint optimization of physical constraints and structural priors, thereby simultaneously improving the accuracy and efficiency under unlabeled conditions. Experiments have verified the advantages of this method in terms of accuracy and robustness, and provide new ideas for achieving efficient and reliable magnetic resonance fingerprint parameter estimation.

Key words: magnetic resonance fingerprint imaging, self-supervised learning, parameter quantization, imaging physical model, manifold structure