Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (4): 345-354.doi: 10.11938/cjmr20253146cstr: 32225.14.cjmr20253146
• Articles • Previous Articles Next Articles
CHEN Xi1,2, LIU Sijie1,2, CAI Yue1,2, CHENG Linlin1,3, WANG Xuxia1,2, KANG Yan1,2, LIN Fuchun1,2, LEI Hao1,2,3,*(
)
Received:2025-02-19
Published:2025-12-05
Online:2025-04-08
Contact:
* Tel: 027-87198542, E-mail: leihao@wipm.ac.cn.
CLC Number:
CHEN Xi, LIU Sijie, CAI Yue, CHENG Linlin, WANG Xuxia, KANG Yan, LIN Fuchun, LEI Hao. Effects of Seizure-inducing Doses Nicotine on Hippocampal Structure in Adolescent Female Rats[J]. Chinese Journal of Magnetic Resonance, 2025, 42(4): 345-354.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig. 4
Short-term nicotine effects on histology / immunohistology of dorsal hippocampal subregions in adolescent female rats, * : p < 0.05. (a) Dorsal hippocampal coronal sections of the GM enlarged regions and HE, GFAP, and IBA1staining, with square boxes indicating the locations of subregions; (b) representative images of HE and GFAP staining in subregions of the dorsal hippocampus; (c) representative images of IBA1 staining in subregions of the dorsal hippocampus, along with statistical results of IOD and microglial soma area
| [1] | JENSSEN B P, WALLEY S C, BOYKAN R, et al. Protecting children and adolescents from tobacco and nicotine[J]. Pediatrics, 2023, 151(5): e2023061806. |
| [2] |
DRZEWIECKI C M, JURASKA J M. The structural reorganization of the prefrontal cortex during adolescence as a framework for vulnerability to the environment[J]. Pharmacol Biochem Be, 2020, 199: 173044.
doi: 10.1016/j.pbb.2020.173044 |
| [3] |
COUNOTTE D S, SMIT A B, PATTIJ T, et al. Development of the motivational system during adolescence, and its sensitivity to disruption by nicotine[J]. Dev Cognit Neurosci, 2011, 1(4): 430-443.
doi: 10.1016/j.dcn.2011.05.010 |
| [4] |
BILSKY S A, LUBER M J, CLOUTIER R M, et al. Cigarette use, anxiety, and insomnia from adolescence to early adulthood: A longitudinal indirect effects test[J]. Addict Behav, 2021, 120: 106981.
doi: 10.1016/j.addbeh.2021.106981 |
| [5] | HAPPER J P, COURTNEY K E, BACA R E, et al. Nicotine use during late adolescence and young adulthood is associated with changes in hippocampal volume and memory performance[J]. Front Neurosci, 2024, 18: 1436951. |
| [6] |
COUNOTTE D S, GORIOUNOVA N A, LI K W, et al. Lasting synaptic changes underlie attention deficits caused by nicotine exposure during adolescence[J]. Nat Neurosci, 2011, 14(4): 417-419.
doi: 10.1038/nn.2770 pmid: 21336271 |
| [7] |
MATEOS B, BORCEL E, LORIGA R, et al. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors[J]. J Psychopharmacol, 2011, 25(12): 1676-1690.
doi: 10.1177/0269881110370503 pmid: 20562169 |
| [8] |
PICKENS L R G, ROWAN J D, BEVINS R A, et al. Sex differences in adult cognitive deficits after adolescent nicotine exposure in rats[J]. Neurotoxicol Teratol, 2013, 38: 72-78.
doi: 10.1016/j.ntt.2013.05.001 pmid: 23673345 |
| [9] |
JACKLER R K, RAMAMURTHI D. Nicotine arms race: JUUL and the high-nicotine product market[J]. Tob Control, 2019, 28(6): 623-628.
doi: 10.1136/tobaccocontrol-2018-054796 pmid: 30733312 |
| [10] |
BENOWITZ N L. Seizures after vaping nicotine in youth: A canary or a red herring?[J]. J Adolescent Health, 2020, 66(1): 1-2.
doi: 10.1016/j.jadohealth.2019.10.016 |
| [11] |
SHAO X M, FANG Z T. Severe acute toxicity of inhaled nicotine and e-cigarettes[J]. Chest, 2020, 157(3): 506-508.
doi: 10.1016/j.chest.2019.10.008 |
| [12] |
FAULCON L M, RUDY S, LIMPERT J, et al. Adverse experience reports of seizures in youth and young adult electronic nicotine delivery systems users[J]. J Adolescent Health, 2020, 66(1): 15-17.
doi: 10.1016/j.jadohealth.2019.10.002 |
| [13] |
IHA H A, KUNISAWA N, SHIMIZU S, et al. Nicotine elicits convulsive seizures by activating amygdalar neurons[J]. Front Pharmacol, 2017, 8: 57.
doi: 10.3389/fphar.2017.00057 pmid: 28232801 |
| [14] |
MINER L L, MARKS M J, COLLINS A C. Relationship between nicotine-induced seizures and hippocampal nicotinic receptors[J]. Life Sci, 1985, 37(1): 75-83.
pmid: 4010471 |
| [15] | DJORDJEVIC M V, DORAN K A. Nicotine psychopharmacology[M]. Berlin, Heidelberg: Springer, 2009. |
| [16] |
GELLNER C A, BELLUZZI J D, LESLIE F M. Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats[J]. Neuropharmacology, 2016, 109: 247-253.
doi: S0028-3908(16)30279-9 pmid: 27346207 |
| [17] |
LEVIN E D, LAWRENCE S S, PETRO A, et al. Adolescent vs. adult-onset nicotine self-administration in male rats: Duration of effect and differential nicotinic receptor correlates[J]. Neurotoxicol Teratol, 2007, 29(4): 458-465.
pmid: 17433619 |
| [18] |
DANNENHOFFER C A, SPEAR L P. Age differences in conditioned place preferences and taste aversions to nicotine[J]. Dev Psychobiol, 2016, 58(5): 660-666.
doi: 10.1002/dev.21400 pmid: 27027859 |
| [19] |
TORRES O V, TEJEDA H A, NATIVIDAD L A, et al. Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development[J]. Pharmacol Biochem Be, 2008, 90(4): 658-663.
doi: 10.1016/j.pbb.2008.05.009 pmid: 18571223 |
| [20] |
PICCIOTTO M R. Nicotine as a modulator of behavior: beyond the inverted U[J]. Trends Pharmacol Sci, 2003, 24(9): 493-499.
pmid: 12967775 |
| [21] | HU Y D, CAI Y, WANG X X, et al. Magnetic resonance imaging the brain structures involved in nicotine susceptibility in rats[J]. Chinese J Magn Reson, 2021, 38(3): 345-355. |
|
胡赢丹, 蔡悦, 王旭霞, 等. 尼古丁易感的脑结构特征的磁共振成像研究[J]. 波谱学杂志, 2021, 38(3): 345-355.
doi: 10.11938/cjmr20212890 |
|
| [22] |
MINER L L, COLLINS A C. Strain comparison of nicotine-induced seizure sensitivity and nicotinic receptors[J]. Pharmacol Biochem Be, 1989, 33(2): 469-475.
pmid: 2813485 |
| [23] |
HILLERT M H, IMRAN I, ZIMMERMANN M, et al. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats[J]. J Neurochem, 2014, 131(1): 42-52.
doi: 10.1111/jnc.12787 pmid: 24909269 |
| [24] |
LIETSCHE J, IMRAN I, KLEIN J. Extracellular levels of ATP and acetylcholine during lithium-pilocarpine induced status epilepticus in rats[J]. Neurosci Lett, 2016, 611: 69-73.
doi: 10.1016/j.neulet.2015.11.028 pmid: 26610905 |
| [25] | ZAPUKHLIAK O, NETSYK O, ROMANOV A, et al. Mecamylamine inhibits seizure-like activity in CA1-CA3 hippocampus through antagonism to nicotinic receptors[J]. PLoS One, 2021, 16(3): e0240074. |
| [26] |
CHEN X, LONG K, LIU S, et al. Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats[J]. Neuroscience, 2024, 566: 205-217.
doi: 10.1016/j.neuroscience.2024.11.059 |
| [27] |
GOMES P X L, DE OLIVEIRA G V, DE ARAÚJO F Y R, et al. Differences in vulnerability to nicotine-induced kindling between female and male periadolescent rats[J]. Psychopharmacol, 2013, 225(1): 115-126.
doi: 10.1007/s00213-012-2799-5 |
| [28] |
TRAUTH J A, SEIDLER F J, SLOTKIN T A. An animal model of adolescent nicotine exposure: effects on gene expression and macromolecular constituents in rat brain regions[J]. Brain Res, 2000, 867(1-2): 29-39.
pmid: 10837795 |
| [29] |
XU Z, SEIDLER F J, TATE C A, et al. Sex-selective hippocampal alterations after adolescent nicotine administration: Effects on neurospecific proteins[J]. Nicotine Tob Res, 2003, 5(6): 955-960.
pmid: 14668080 |
| [30] |
SPEAR L P. The adolescent brain and age-related behavioral manifestations[J]. Neurosci Biobehav Rev, 2000, 24(4): 417-463.
doi: 10.1016/s0149-7634(00)00014-2 pmid: 10817843 |
| [31] |
EHLINGER D G, BERGSTROM H C, BURKE J C, et al. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent[J]. Brain Struct Funct, 2016, 221(1): 133-145.
doi: 10.1007/s00429-014-0897-3 pmid: 25257604 |
| [32] |
COUNOTTE D S, SPIJKER S, VAN DE BURGWAL L H, et al. Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats[J]. Neuropsychopharmacology, 2009, 34(2): 299-306.
doi: 10.1038/npp.2008.96 pmid: 18580873 |
| [33] |
CANO M, REYNAGA D D, BELLUZZI J D, et al. Chronic exposure to cigarette smoke extract upregulates nicotinic receptor binding in adult and adolescent rats[J]. Neuropharmacology, 2020, 181: 108308.
doi: 10.1016/j.neuropharm.2020.108308 |
| [34] |
JÓSÊ A S, FRANCISCATO C, SÔNEGO F, et al. Sensitivity of young rats to nicotine exposure: Physiological and biochemical parameters[J]. Ecotox Environ Safe, 2009, 72(1): 242-247.
doi: S0147-6513(08)00095-X pmid: 18462794 |
| [35] | OVIE F O, AKPUAKA F C, NDUKWE G U, et al. Effect of cigarette smoke inhalation on the hippocampus of adult female wistar rat[J]. Asian J Med Princ Clin Pract, 2021, 4(2): 321-326. |
| [36] |
ASAN L, FALFÁN-MELGOZA C, BERETTA C A, et al. Cellular correlates of gray matter volume changes in magnetic resonance morphometry identified by two-photon microscopy[J]. Sci Rep, 2021, 11(1): 4234.
doi: 10.1038/s41598-021-83491-8 pmid: 33608622 |
| [37] |
WU H, WANG X, GAO Y, et al. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging[J]. Neuroscience, 2016, 322: 221-233.
doi: 10.1016/j.neuroscience.2016.02.043 pmid: 26917273 |
| [38] | HUANG W, CAO Z Y. STZ-induced progressive brain atrophy studied by magnetic resonance imaging and histochemical staining[J]. Chinese J Magn Reson, 2015, 32(3): 439-449. |
|
黄微, 曹子玉. STZ诱导大鼠1型糖尿病进行性脑萎缩的磁共振成像及组织化学研究[J]. 波谱学杂志, 2015, 32(3): 439-449.
doi: 10.11938/cjmr20150305 |
|
| [39] |
ABREU-VILLAÇA Y, SEIDLER F J, TATE C A, et al. Nicotine is a neurotoxin in the adolescent brain: critical periods, patterns of exposure, regional selectivity, and dose thresholds for macromolecular alterations[J]. Brain Res, 2003, 979(1-2): 114-128.
doi: 10.1016/S0006-8993(03)02885-3 |
| [40] |
SHINGO A S, KITO S. Effects of nicotine on neurogenesis and plasticity of hippocampal neurons[J]. J Neural Transm, 2005, 112(11): 1475-1478.
pmid: 16245069 |
| [41] |
BRUIJNZEEL A W, BAUZO R M, MUNIKOTI V, et al. Tobacco smoke diminishes neurogenesis and promotes gliogenesis in the dentate gyrus of adolescent rats[J]. Brain Res, 2011, 1413: 32-42.
doi: 10.1016/j.brainres.2011.07.041 pmid: 21840504 |
| [42] |
POLESSKAYA O O, FRYXELL K J, MERCHANT A D, et al. Nicotine causes age-dependent changes in gene expression in the adolescent female rat brain[J]. Neurotoxicol Teratol, 2007, 29(1): 126-140.
pmid: 17234382 |
| [43] |
ROMANO E, DE ANGELIS F, ULBRICH L, et al. Nicotine exposure during adolescence: cognitive performance and brain gene expression in adult heterozygous reeler mice[J]. Psychopharmacol, 2014, 231(8): 1775-1787.
doi: 10.1007/s00213-013-3388-y |
| [44] |
SCHOCHET T L, KELLEY A E, LANDRY C F. Differential expression of Arc mRNA and other plasticity-related genes induced by nicotine in adolescent rat forebrain[J]. Neuroscience, 2005, 135(1): 285-297.
pmid: 16084664 |
| [45] |
SMITH R F, MCDONALD C G, BERGSTROM H C, et al. Adolescent nicotine induces persisting changes in development of neural connectivity[J]. Neurosci Biobehav Rev, 2015, 55: 432-443.
doi: 10.1016/j.neubiorev.2015.05.019 pmid: 26048001 |
| [46] |
HOLLIDAY E D, NUCERO P, KUTLU M G, et al. Long-term effects of chronic nicotine on emotional and cognitive behaviors and hippocampus cell morphology in mice: comparisons of adult and adolescent nicotine exposure[J]. Eur J Neurosci, 2016, 44(10): 2818-2828.
doi: 10.1111/ejn.13398 pmid: 27623427 |
| [47] |
PAOLICELLI R C, BOLASCO G, PAGANI F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458.
doi: 10.1126/science.1202529 pmid: 21778362 |
| [48] |
PARKHURST C N, YANG G, NINAN I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor[J]. Cell, 2013, 155(7): 1596-1609.
doi: 10.1016/j.cell.2013.11.030 pmid: 24360280 |
| [49] |
MAHAJAN S D, HOMISH G G, QUISENBERRY A. Multifactorial etiology of adolescent nicotine addiction: A review of the neurobiology of nicotine addiction and its implications for smoking cessation pharmacotherapy[J]. Front Public Health, 2021, 9: 664748.
doi: 10.3389/fpubh.2021.664748 |
| [50] |
LINKER K E, ELABD M G, TAWADROUS P, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure[J]. Nat Commun, 2020, 11(1): 306.
doi: 10.1038/s41467-019-14173-3 pmid: 31949158 |
| [51] |
KOMORI T, OKAMURA K, IKEHARA M, et al. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior[J]. Mol Psychiatry, 2024, 29(5): 1338-1349.
doi: 10.1038/s41380-024-02413-y |
| [1] | LI Yinghao, WANG Lihui, WANG Sucheng, ZHU Zhongqi, HUANG Changdong, LI Renfeng, CAO Kaiming, HU Haiyang, JIA Yiming, LIANG Songtao, YANG Guang, LU Qing, WANG Hongzhi. Study on Pancreas Automatic Segmentation, Regional Quantification, and Diabetes Assessment [J]. Chinese Journal of Magnetic Resonance, 2025, 42(4): 378-389. |
| [2] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
| [3] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
| [4] | WEI Zhihong, KONG Xudong, KONG Yan, YAN Shiju, DING Yang, WEI Xianding, KONG Dong, YANG Bo. Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 143-153. |
| [5] | CHEN Qun, YANG Zijian, CHENG Xinyi, JIA Siyi, DU Xiaoxia, WANG Mengxing. Application of Magnetic Resonance Imaging Technology in Pediatric Exercise Intervention Research [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 195-204. |
| [6] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
| [7] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
| [8] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
| [9] | LI Pan,FANG Delei,ZHANG Junxia,MA Debei. Magnetic Resonance Compatibility Analysis Method of Surgical Robotic System Based on Image Quality Evaluation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 79-91. |
| [10] | Hui XU, Yi-ting WU, Xu-xia WANG, Yan KANG, Hao LEI, Li-feng GAO. Hippocampal Metabolite Alterations in Long-term Insulin-treated Type 1 Diabetes Mellitus Rats Revealed by 1H MRS [J]. Chinese Journal of Magnetic Resonance, 2022, 39(4): 393-400. |
| [11] |
De-gang TANG,Hong-chuang LI,Xiao-ling LIU,Lei SHI,Hai-dong LI,Chao-hui YE,Xin ZHOU.
A Simulation Study on the Effect of the High Permittivity Materials Geometrical Structure on the Transmit Field |
| [12] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
| [13] | Yan MA, Cang-ju XING, Liang XIAO. Knee Joint Image Segmentation and Model Construction Based on Cascaded Network [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 184-195. |
| [14] | Jun LUO, Sheng-ping LIU, Xing YANG, Jia-sheng WANG, Ye LI. Design of a 5 T Non-magnetic Magnetic Resonance Radio Frequency Power Amplifier [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 163-173. |
| [15] | Ju-min ZHANG,Shi-zhen CHEN,Xin ZHOU. Dual-modal MRI T1-T2 Contrast Agent Based on Dynamic Organic Gadolinium Nanoparticles [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 11-19. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||