[1] |
COATES G, 肖立志, PRAMMER M. 核磁共振测井原理与应用[M]. 北京: 石油工业出版社, 2007.
|
[2] |
邓克俊. 核磁共振测井理论及应用[M]. 谢然红, 编. 东营: 中国石油大学出版社, 2010.
|
[3] |
WASHBURN K E, BIRDWELL J E. A new laboratory approach to shale analysis using NMR relaxometry[C]// Unconventional Resources Technology Conference, Denver, Colorado. 2013: 1775-1782.
|
[4] |
WASHBURN K E, ANDERSSEN E, VOGT S J, et al. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry[J]. J Magn Reson, 2015, 250: 7-16.
doi: S1090-7807(14)00295-X
pmid: 25459882
|
[5] |
GUO J, MACMILLAN B, ZAMIRI M S, et al. Magnetic resonance T1-T2* and T1ρ-T2* relaxation correlation measurements in solid-like materials with non-exponential decays[J]. J Magn Reson, 2021, 328: 107005.
|
[6] |
DAIGLE H, JOHNSON A, GIPS J P, et al. Porosity evaluation of shales using NMR secular relaxation[C]// Unconventional Resources Technology Conference, Denver, Colorado. 2014: 1205-1216.
|
[7] |
XU H, TANG D, ZHAO J, et al. A precise measurement method for shale porosity with low-field nuclear magnetic resonance: A case study of the Carboniferous-Permian strata in the Linxing area, eastern Ordos Basin, China[J]. Fuel, 2015, 143: 47-54.
|
[8] |
ZHANG P, LI J, LU S, et al. A precise porosity measurement method for oil-bearing micro/nano porous shales using low-field nuclear magnetic resonance (LF-NMR)[J]. J Nanosci Nanotechnol, 2017, 17: 6827-6835.
|
[9] |
TAN M, MAO K, SONG X, et al. NMR petrophysical interpretation method of gas shale based on core NMR experiment[J]. Pet Sci Eng, 2015, 136: 100-111.
|
[10] |
GUO J F, XIE R H, ZOU Y L. Simulation of NMR responses in sandstone and restricted diffusion[J]. Chinese Journal of Geophysics, 2016, 59(7): 2703-2712. (in Chinese)
|
|
郭江峰, 谢然红, 邹友龙. 砂岩核磁共振响应模拟及受限扩散[J]. 地球物理学报, 2016, 59(7): 2703-2712.
doi: 10.6038/cjg20160733
|
[11] |
LI J, LU S, CHEN G, et al. A new method for measuring shale porosity with low-field nuclear magnetic resonance considering non-fluid signals[J]. Mar Pet Geol, 2019, 102: 535-543.
|
[12] |
LI X, LIU P, LUO Y Y, et al. Analysis of influencing factors on porosity measurement of shale gas reservoir core[J]. Progress in Geophysics, 2015, 30(5): 2181-2187.
|
|
李新, 刘鹏, 罗燕颖, 等. 页岩气储层岩心孔隙度测量影响因素分析[J]. 地球物理学进展, 2015, 30(5): 2181-2187.
|
[13] |
SUN J M, ZONG C L, DONG X, et al. Porosity measurement of crushed shales using NMR[J]. Well Logging Technology, 2017, 41(5): 512-516.
|
|
孙建孟, 宗成林, 董旭. 基于核磁共振的页岩粉碎样品孔隙度研究[J]. 测井技术, 2017, 41(5): 512-516.
|
[14] |
ZHOU S W, DONG D Z, ZHANG J H, et al. Optimization of key parameters for porosity measurement of shale gas reservoirs[J]. Natural Gas Industry, 2021, 41(5): 20-29.
|
|
周尚文, 董大忠, 张介辉, 等. 页岩气储层孔隙度测试方法关键参数优化[J]. 天然气工业, 2021, 41(5): 20-29.
|
[15] |
ZHANG G, HE Z B, CAO W Q, et al. Effects of echo time on NMR apparent porosity and correction methods[J]. Chinese J Magn Reson, 2020, 37(2): 172-181.
|
|
张宫, 何宗斌, 曹文倩, 等. 回波间隔对核磁共振表观孔隙度的影响及矫正方法[J]. 波谱学杂志, 2020, 37(2): 172-181.
doi: 10.11938/cjmr20192771
|
[16] |
DU Q, XIAO L, ZHANG Y, et al. A novel two-dimensional NMR relaxometry pulse sequence for petrophysical characterization of shale at low field[J]. J Magn Reson, 2020, 310: 106643.
|
[17] |
岩心分析方法[S]. 行业标准, 2019.
|
[18] |
岩样核磁共振参数实验室测量规范[S]. 行业标准, 2014.
|