Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (3): 285-298.doi: 10.11938/cjmr20243137cstr: 32225.14.cjmr20243137
• Magnetic Resonance Instrument & Technology • Previous Articles Next Articles
LIU Ying*(), YUAN Binhua, ZHANG Haowei
Received:
2024-11-11
Published:
2025-09-05
Online:
2024-12-20
Contact:
* Tel: 18602168660, E-mail: ling2431@163.com.CLC Number:
LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator[J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
1 GB Dual DDR3 SDRAM with 15 memory sub-test data patterns and sequential write stress test results
子测试 | 数据模式描述 | 比较字和字节读取值 与写入值出现错误计数 | 耗时/s |
---|---|---|---|
Memtest_0 (0) | 递增模式, 写入每个内存地址的唯一值(数据 = 地址) | 0 | 35.6024 |
Memtest_s (1) | 写入0x00000000 | 0 | 22.9253 |
Memtest_s (2) | 写入0xFFFFFFFF | 0 | 22.9270 |
Memtest_s (3) | 写入0xAAAAAAAA | 0 | 22.9270 |
Memtest_s (4) | 写入0x55555555 | 0 | 22.9253 |
Memtest_s (5) | 交替写入0x00000000和0xFFFFFFFF | 0 | 22.9270 |
Memtest_s (6) | 交替写入0xFFFFFFFF和0x00000000 | 0 | 22.9270 |
Memtest_s (7) | 交替写入0x55555555和0xAAAAAAAA | 0 | 22.9270 |
Memtest_s (8) | 交替写入0xAAAAAAAA和0x55555555 | 0 | 22.9253 |
Memtest_p (9) | 干扰模式: 8 bits中每bit相同且每bit干扰一次 | 0 | 35.0279 |
Memtest_p (10) | 干扰模式: 8 bits中每bit反转且每bit干扰一次 | 0 | 35.0385 |
Memtest_l (11) | 具有不同种子的伪随机模式 | 0 | 36.6623 |
Memtest_l (12) | 具有不同种子的伪随机模式 | 0 | 36.6623 |
Memtest_l (13) | 具有不同种子的伪随机模式 | 0 | 36.6623 |
Memtest_l (14) | 具有不同种子的伪随机模式 | 0 | 36.6623 |
Fig. 8
(a) RF pulse waveform at 63.87 MHz with 401 mV peak-to-peak; (b) RF pulse waveform at 63.87 MHz with 205 mV peak-to-peak; (c) 4-channel fast frequency modulation from 1 MHz to 2 MHz; (d) 4-channel fast phase modulation from phase 0 to phase π; (e) Dual-channel RF hard pulse waveform at 63.88 MHz with 206 mV peak-to-peak; (f) Dual-channel 5-Sinc RF soft pulse at 63.88 MHz with 206 mV peak-to-peak waveforms
[1] | 俎栋林. 核磁共振成像仪——构造原理和物理设计[M]. 北京: 科学出版社, 2015. |
[2] | Bernstein M. Handbook of MRI pulse sequences[M]. Massachusetts: Elsevier, 2004. |
[3] | 周帅. 基于FPGA与直接数字合成的磁共振射频发生研究[D]. 北京: 北京化工大学, 2021. |
[4] | 徐勤. 数字化磁共振成像谱仪[D]. 上海: 华东师范大学, 2006. |
[5] | LI Y W, XIAO L. Magnetic resonance imaging RF pulse generator based on FPGA and DDS[J]. Chinese J Magn Reson, 2016, 33(4): 590-596. |
李聿为, 肖亮. 基于FPGA与DDS的磁共振成像射频脉冲发生器[J]. 波谱学杂志, 2016, 33(4): 590-596.
doi: 10.11938/cjmr20160408 |
|
[6] | ZHU Y F, HE W, HE C H, et al. Nuclear magnetic resonance RF pulse generator based on digital modulation technique[J]. Chinese J Magn Reson, 2018, 35(3): 318-327. |
朱云峰, 何为, 何传红, 等. 基于数字调制技术的核磁共振射频脉冲发生器[J]. 波谱学杂志, 2018, 35(3): 318-327.
doi: 10.11938/cjmr20172607 |
|
[7] | LU S, CHANG Y, QIAN S S, et al. Optimized design of selective RF pulses for simultaneous multilayer MRI[J]. Chinese J Magn Reson, 2018, 35(2): 141-149. |
卢杉, 常严, 钱嵩松, 等. 用于同时多层MRI的选择性射频脉冲的优化设计[J]. 波谱学杂志, 2018, 35(2): 141-149.
doi: 10.11938/cjmr20172596 |
|
[8] | XIAO L, WANG W. A radio-frequency source using direct digital synthesis and field programmable gate array for nuclear magnetic resonance[J]. Rev Sci Instrum, 2009, 80: 124703. |
[9] | JIANG Y, JIANG Y, TAO H, et al. A complete digital radio-frequency source for nuclear magnetic resonance spectroscopy[J]. Rev Sci Instrum, 2002, 73: 3329-3331. |
[10] | SON H W, CHO Y K, GOPINATH A, et al. B1+ shimming with SAR reduction in high-field MRI[J]. J Electromagn Waves Appl, 2013, 27(12): 1521-1524. |
[11] | AFLAKI P, MOHAMMADI A, NEGRA R, et al. A new approach to design a frequency synthesizer using direct digital synthesis technique[C]// Canadian Conference on Electrical and Computer Engineering, Niagara Falls, ON, Canada: IEEE, 2008: 001733-001736. |
[12] | DE MENEZES N R, HERNANDEZ H D, CARVALHO D, et al. All-digital FPGA-based RF pulsed transmitter with hardware complexity reduction techniques[C]// Symposium on Integrated Circuits and Systems Design (SBCCI), Campinas, Brazil: IEEE, 2020: 1-5. |
[13] | KUOY E, GLAVIS-BLOOM J, HOVIS G, et al. Point-of-care brain MRI: preliminary results from a single-center retrospective study[J]. Radiology, 2022, 305(3): 666-671. |
[14] |
LIU Y, LEONG A T, ZHAO Y, et al. A low-cost and shielding-free ultra-low-field brain MRI scanner[J]. Nat Commun, 2021, 12(1): 7238.
doi: 10.1038/s41467-021-27317-1 pmid: 34907181 |
[15] |
MAZUREK M H, CAHN B A, YUEN M M, et al. Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage[J]. Nat Commun, 2021, 12(1): 5119.
doi: 10.1038/s41467-021-25441-6 pmid: 34433813 |
[16] |
KIMBERLY W T, SORBY-ADAMS A J, WEBB A G, et al. Brain imaging with portable low-field MRI[J]. Nat Rev Bioeng, 2023, 1(9): 617-630.
doi: 10.1038/s44222-023-00086-w pmid: 37705717 |
[17] | JIANG M, LU S B, LI Y, et al. Compact multi-channel radio frequency pulse-sequence generator with fast-switching capability for cold-atom interferometers[J]. Rev Sci Instrum, 2023, 94(9): 093204. |
[18] | 刘朝阳, 张志, 毛文平. 一种多通道核磁共振射频信号发射机: 中国, 201210209555.8[P]. 2014-08-13. |
[19] | HAN H, EIGENTLER T W, WANG S, et al. Design, implementation, evaluation and application of a 32-channel radio frequency signal generator for thermal magnetic resonance based anti-cancer treatment[J]. Cancers, 2020, 12(7): 1720. |
[20] | USMANI M N. FPGA controlled RF pulse generator for teaching MRI[D]. Texas: Texas A&M University, 2021. |
[21] | HE G, WANG W M. A multi-source RF transmitter for high-field MRI[J]. Chinese J Magn Reson, 2017, 34(3): 338-346. |
何刚, 王为民. 一种用于高场MRI的多源射频发射机[J]. 波谱学杂志, 2017, 34(3): 338-346.
doi: 10.11938/cjmr20162533 |
[1] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[2] | DU Qunjie. Experimental Study on Accurate Determination of Shale Porosity by Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 275-284. |
[3] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[4] | LI Peng, JI Yuping, HU Yue. High-quality MR Fingerprinting Reconstruction Based on Manifold Structured Data Priors [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 249-264. |
[5] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[6] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[7] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
[10] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[11] | CHEN Qun, YANG Zijian, CHENG Xinyi, JIA Siyi, DU Xiaoxia, WANG Mengxing. Application of Magnetic Resonance Imaging Technology in Pediatric Exercise Intervention Research [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 195-204. |
[12] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[13] | SHAO Zhengze, WANG Xingle, YANG Xue, XIN Jiaxiang, WEI Daxiu, YAO Yefeng. A Spectral Editing Technique Based on Optimized Control of Nuclear Spin to Realize Lactate Signal Selection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 1-12. |
[14] | YANG Jiacheng, WANG Yuanjun. Improved Constrained Spherical Deconvolution for Microstructural Imaging of Brain Gray Matter [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 67-79. |
[15] | LI Jingxin, TONG Wei, YU Lu, ZHANG Zhitao, PI Li. Design of an Automated Instrument for Washing EPR Sample Tubes [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 89-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||