Chinese Journal of Magnetic Resonance ›› 2016, Vol. 33 ›› Issue (4): 609-617.doi: 10.11938/cjmr20160410
Previous Articles Next Articles
ZHAO Xin-xin1, BO Bin-shi1, LIU Tian2, WANG Yi1,2,3, LI Jian-qi1
Received:
2016-04-04
Revised:
2016-10-24
Published:
2016-12-05
Online:
2016-12-05
CLC Number:
ZHAO Xin-xin, BO Bin-shi, LIU Tian, WANG Yi, LI Jian-qi. A Phase Fitting Algorithm for Multi-Echo Quantitative Susceptibility Mapping[J]. Chinese Journal of Magnetic Resonance, 2016, 33(4): 609-617.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Wang Y, Liu T. Quantitative susceptibility mapping (QSM):Decoding MRI data for a tissue magnetic biomarker[J]. Magn Reson Med, 2015, 73(1):82-101. [2] Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J]. Neuroimage, 2011, 55(4):1645-1656. [3] Haacke E M, Liu S, Buch S, et al. Quantitative susceptibility mapping:current status and future directions[J]. Magn Reson Imaging, 2015, 33(1):1-25. [4] Liu C, Li W, Tong K A, et al. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain[J]. J Magn Reson Imaging, 2015, 42(1):23-41. [5] Liu T, Khalidov I, de Rochefort L, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF)[J]. NMR Biomed, 2011, 24(9):1129-1136. [6] Liu J, Liu T, de Rochefort L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map[J]. Neuroimage, 2012, 59(3):2560-2568. [7] de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization:validation and application to brain imaging[J]. Magn Reson Med, 2010, 63(1):194-206. [8] Shmueli K, de Zwart J A, van Gelderen P, et al. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data[J]. Magn Reson Med, 2009, 62(6):1510-1522. [9] Wang A-li(王阿莉), Lin Jian-zhong(林建忠), Liu Wei-jun(刘伟俊), et al. Quantitative susceptibility mapping(定量磁化率成像重建方法及其应用)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(1):133-154. [10] Fritzsch D, Reiss-Zimmermann M, Trampel R, et al. Seven-tesla magnetic resonance imaging in Wilson disease using quantitative susceptibility mapping for measurement of copper accumulation[J]. Invest Radiol, 2014, 49(5):299-306. [11] Li J Q, Chang S X, Liu T, et al. Phase-corrected bipolar gradients in multi-echo gradient-echo sequences for quantitative susceptibility mapping[J]. Magn Reson Mater Phy, 2015, 28(4):347-355. [12] Gilbert G, Savard G, Bard C, et al. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging[J]. Magn Reson Imaging, 2012, 30(5):722-730. [13] Wang Y. Quantitative Susceptibility Mapping:Magnetic Resonance Imaging of Tissue Magnetism[M]. Seattle:Createspace, 2013, p228. [14] Kressler B, de Rochefort L, Liu T, et al. Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps[J]. IEEE Trans Med Imaging, 2010, 29(2):273-281. [15] Murakami Y, Kakeda S, Watanabe K, et al. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease[J]. Am J Neuroradiol, 2015, 36(6):1102-1108. [16] Barbosa J H, Santos A C, Tumas V, et al. Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2*[J]. Magn Reson Imaging, 2015, 33(5):559-565. [17] Du G, Liu T, Lewis M M, et al. Quantitative susceptibility mapping of the midbrain in Parkinson's disease[J]. Mov Disord, 2016, 31(3):317-324. [18] He N, Ling H, Ding B, et al. Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping[J]. Hum Brain Mapp, 2015, 36(11):4407-4420. [19] Hung K W, Siu W C. Improved image interpolation using bilateral filter for weighted least square estimation[C]. Hong Kong:Proceedings to IEEE International Conference on Image Processing, 2010:3297-3330. [20] Yin X, Shah S, Katsaggelos A K, et al. Improved R2* measurement accuracy with absolute SNR truncation and optimal coil combination[J]. NMR Biomed, 2010, 23(10):1127-1136. [21] Lotfipour A K, Wharton S, Schwarz S T, et al. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease[J]. J Magn Reson Imaging, 2012, 35(1):48-55. [22] Lv Z, Jiang H, Xu H, et al. Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in Parkinson's disease[J]. J Neural Transm, 2011, 118(3):361-369. [23] Liu T, Wisnieff C, Lou M, et al. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping[J]. Magn Reson Med, 2013, 69(2):467-476. [24] Ma J F, Son J B, Hazle J D. An improved region growing algorithm for phase correction in MRI[J]. Magn Reson Med, 2015, doi:10.1002/mrm.25892. [25] Association N E M. Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging[M]. Rosslyn:National Electrical Manufacturers Association, 2008 [26] Haacke E M, Tang J, Neelavalli J, et al. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation[J]. J Magn Reson Imaging, 2010, 32(3):663-676. [27] Dong Fang(董芳), Pei Meng-chao(裴孟超), Wang Qian-feng(王前锋), et al. Gradient echo imaging of the human brain:Respiratory induved artifacts and navigator echo correction(颅脑梯度回波成像:呼吸伪影和导航回波矫正)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(3):321-330. [28] Groger A, Berg D. Does structural neuroimaging reveal a disturbance of iron metabolism in Parkinson's disease? Implications from MRI and TCS studies[J]. J Neural Transm, 2012, 119(12):1523-1528. [29] Chan W C, Tejani Z, Budhani F, et al. R2* as a surrogate measure of ferriscan iron quantification in thalassemia[J]. J Magn Reson Imaging, 2014, 39(4):1007-1011. |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[3] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[4] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[5] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[6] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[7] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | HE Fengcheng, LI Mingdao, LV Xinglong, YAO Shouquan, JIANG Yu. Software Design of the Handheld NMR Spectrometer Console [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | . Structural Identification and Complete NMR Spectral Assignments of 4-Isopropoxy-1-(trifluoroacetyl)naphthalene [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[12] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
[13] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[14] | SUN Haoyun, WANG Lijia. Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 130-142. |
[15] | WEI Zhihong, KONG Xudong, KONG Yan, YAN Shiju, DING Yang, WEI Xianding, KONG Dong, YANG Bo. Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 143-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||