Chinese Journal of Magnetic Resonance ›› 2020, Vol. 37 ›› Issue (1): 76-85.doi: 10.11938/cjmr20192755
• Articles • Previous Articles Next Articles
FENG Zong-jing1, DU Ya-ping1, LUO Feng2, XU Jun1
Received:
2019-06-05
Published:
2020-03-05
Online:
2019-09-16
CLC Number:
FENG Zong-jing, DU Ya-ping, LUO Feng, XU Jun. An Ultrawide-Line 139La Solid-State NMR Investigation of Layered La(OH)2NO3[J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 76-85.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] SELS B, VOS D D, BUNTINX M, et al. Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination[J]. Nature, 1999, 400(6747):855-857. [2] LEROUX F, BESSE J P. Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites[J]. Chem Mater, 2001, 13(10):3507-3515. [3] KHAN A I, O'HARE D. Intercalation chemistry of layered double hydroxides:Recent developments and applications[J]. J Mater Chem, 2002, 12(11):3191-3198. [4] SELS B F, DE VOS D E, BUNTINX M, et al. Transition metal anion exchanged layered double hydroxides as a bioinspired model of vanadium bromoperoxidase[J]. J Catal, 2003, 216(1):288-297. [5] LIANG J B, MA R Z, SASAKI T. Layered rare earth hydroxides (LREHs):Synthesis and structure characterization towards multifunctionality[J]. Dalton Trans, 2014, 43(27):10355-10364. [6] ZHU Q, WANG X J, LI J G. Recent progress in layered rare-earth hydroxide (LRH) and its application in luminescence[J]. J Adv Ceram, 2017, 6(3):177-186. [7] XU J, CHEN X Y, XU Y S, et al. Ultrathin 2D rare-earth nanomaterials:Compositions, syntheses, and applications[J]. Adv Mater, 2019:e1806461. doi:10.1002/adma.201806461. [8] NEWMAN S P, JONES W. Comparative study of some layered hydroxide salts containing exchangeable interlayer anions[J]. J Solid State Chem, 1999, 148(1):26-40. [9] SONG Y X, LUO M, LIN C S, et al. Structural modulation of nitrate group with cations to affect SHG responses in RE(OH)2NO3 (RE=La, Y, and Gd):New polar materials with large NLO effect after adjusting pH values of reaction systems[J]. Chem Mater, 2017, 29(2):896-903. [10] HASCHKE J M. Preparation, phase equilibriums, crystal chemistry, and some properties of lanthanide hydroxide nitrates[J]. Inorg Chem, 1974, 13(8):1812-1818. [11] LOUER M, LOUER D, LOPEZ DELGADO A, et al. The structures of lanthanum hydroxide nitrates investigated by the Rietveld profile refinement technique[J]. Eur J Solid State Inorg Chem, 1989, 20(50):241-253. [12] ALBA M D, CHAIN P, FLORIAN P, et al. 45Sc spectroscopy of solids:Interpretation of quadrupole interaction parameters and chemical shifts[J]. J Phys Chem C, 2010, 114(28):12125-12132. [13] BR UNIGER T, HOFMANN A J, MOUDRAKOVSKI I L, et al. A 45Sc-NMR and DFT calculation study of crystalline scandium compounds[J]. Solid State Sci, 2016, 511-7. [14] PATERSON A L, HANSON M A, WERNER-ZWANZIGER U, et al. Relating 139La quadrupolar coupling constants to polyhedral distortion in crystalline structures[J]. J Phys Chem C, 2015, 119(45):25508-25517. [15] LI D B, XU S, YU Z W. Application of solid-state NMR to bone and bone biomaterials[J]. Chinese J Magn Reson, 2017, 34(1):115-129. 李东北, 许帅, 喻志武. 固体核磁共振技术在骨基生物材料研究中的应用[J]. 波谱学杂志, 2017, 34(1):115-129. [16] XU J, TERSKIKH V V, HUANG Y. Resolving multiple non-equivalent metal sites in magnesium-containing metal-organic frameworks by natural abundance 25Mg solid-state NMR spectroscopy[J]. Chem Eur J, 2013, 19(14):4432-4436. [17] XU J, TERSKIKH V V, CHU Y, et al. Mapping out chemically similar, crystallographically nonequivalent hydrogen sites in metal-organic frameworks by 1H solid-state NMR spectroscopy[J]. Chem Mater, 2015, 27(9):3306-3316. [18] JIANG T T, FU X B, WU J Z, et al. Structure and dynamics of polymer-ceramic interface in Li1.5Al0.5Ge1.5P3O12/polyether solid electrolyte:A solid-state NMR study[J]. Chinese J Magn Reson, 2017, 34(4):429-438. 姜婷婷, 付晓彬, 吴金泽, 等. Li1.5Al0.5Ge1.5P3O12高分子固体电解质表界面结构与分子运动的固体NMR研究[J]. 波谱学杂志, 2017, 34(4):429-438. [19] HARRIS R K, BECKER E D, CABRAL DE MENEZES S M, et al. NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC recommendations 2001)[J]. Pure Appl Chem, 2001, 73(11):1795-1818. [20] PYYKK P. Year-2017 nuclear quadrupole moments[J]. Mol Phys, 2018, 116(10):1328-1338. [21] LARSEN F H, JAKOBSEN H J, ELLIS P D, et al. Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors[J]. J Phys Chem A, 1997, 101(46):8597-8606. [22] LEFORT R, WIENCH J W, PRUSKI M, et al. Optimization of data acquisition and processing in Carr-Purcell-Meiboom-Gill multiple quantum magic angle spinning nuclear magnetic resonance[J]. J Chem Phys, 2002, 116(6):2493-2501. [23] HUNG I, GAN Z H. On the practical aspects of recording wideline QCPMG NMR spectra[J]. J Magn Reson, 2010, 204(2):256-265. [24] MASSIOT D, FARNAN I, GAUTIER N, et al. 71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3:Resolution of four-and six-fold coordinated Ga sites in static conditions[J]. Solid State Nucl Magn Reson, 1995, 4(4):241-248. [25] BENNETT A E, RIENSTRA C M, AUGER M, et al. Heteronuclear decoupling in rotating solids[J]. J Chem Phys, 1995, 103(16):6951-6958. [26] PERRAS F A, WIDDIFIELD C M, BRYCE D L. QUEST-QUadrupolar Exact SofTware:A fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei[J]. Solid State Nucl Magn Reson, 2012, 45-4636-44. [27] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Z Kristallogr, 2005, 220(5-6):567-570. [28] GROSZEWICZ P B, BREITZKE H, DITTMER R, et al. Nanoscale phase quantification in Lead-free (Bi1/2Na1/2)TiO3-BaTiO3 relaxor ferroelectrics by means of 23Na NMR[J]. Phys Rev B, 2014, 90(22):220104. [29] DI BITETTO A, ANDR E, CARTERET C, et al. Probing the dynamics of layered double hydroxides by solid-state 27Al NMR spectroscopy[J]. J Phys Chem C, 2017, 121(13):7276-7281. [30] DAWSON D M, GRIFFIN J M, SEYMOUR V R, et al. A multinuclear NMR study of six forms of AlPO-34:Structure and motional broadening[J]. J Phys Chem C, 2017, 121(3):1781-1793. [31] BONHOMME C, GERVAIS C, BABONNEAU F, et al. First-principles calculation of NMR parameters using the Gauge Including Projector Augmented Wave Method:A chemist's point of view[J]. Chem Rev, 2012, 112(11):5733-5779. |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[3] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[4] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[5] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[6] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[7] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | HE Fengcheng, LI Mingdao, LV Xinglong, YAO Shouquan, JIANG Yu. Software Design of the Handheld NMR Spectrometer Console [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | . Structural Identification and Complete NMR Spectral Assignments of 4-Isopropoxy-1-(trifluoroacetyl)naphthalene [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
[12] | SUN Haoyun, WANG Lijia. Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 130-142. |
[13] | WEI Zhihong, KONG Xudong, KONG Yan, YAN Shiju, DING Yang, WEI Xianding, KONG Dong, YANG Bo. Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 143-153. |
[14] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[15] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||