Chinese Journal of Magnetic Resonance ›› 2021, Vol. 38 ›› Issue (3): 356-366.doi: 10.11938/cjmr20212885
• Articles • Previous Articles Next Articles
Shi-ju YAN1,Yong-sen HAN2,*(),Guang-yu TANG2
Received:
2021-01-26
Published:
2021-09-05
Online:
2021-08-26
Contact:
Yong-sen HAN
E-mail:hanys@163.com
CLC Number:
Shi-ju YAN,Yong-sen HAN,Guang-yu TANG. An Improved Level Set Algorithm for Prostate Region Segmentation[J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 356-366.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig.3
Comparison between the segmentation results with the algorithm proposed in this research and those with ground truth. The upper and lower lines represent two different patients respectively. The left, middle, and right columns represent the slices of the bottom, middle, and top of the prostate, respectively. Green contour is ground truth, while red contour is segmented by our algorithm
1 | WORLD HEALTH ORGANIZATION. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020 questions and answers (Q & A)[OL]. https://www.iarc.fr/faq/latest-global-cancer-data-2020-qa. |
2 |
ANAS E M A , MOUSAVI P , ABOLMAESUMI P . A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy[J]. Med Image Anal, 2018, 48, 107- 116.
doi: 10.1016/j.media.2018.05.010 |
3 | WANG L J , SU X Y , LI Y , et al. Segmentation of right ventricle in cardiac cine MRI using COLLATE fusion-based multi-atlas[J]. Chinese J Magn Reson, 2018, 35 (4): 407- 416. |
王丽嘉, 苏新宇, 李亚, 等. 基于COLLATE融合多图谱的心脏电影MRI右心室分割[J]. 波谱学杂志, 2018, 35 (4): 407- 416. | |
4 |
WANG X L . Application of histogram analysis of dynamic enhanced MRI quantitative parameter in the diagnosis of prostate cancer[J]. Chinese Journal of CT and MRI, 2020, 18 (12): 110- 113.
doi: 10.3969/j.issn.1672-5131.2020.12.035 |
王晓蕾. 动态增强MRI定量参数直方图分析在诊断前列腺癌中的应用[J]. 中国CT和MRI杂志, 2020, 18 (12): 110- 113.
doi: 10.3969/j.issn.1672-5131.2020.12.035 |
|
5 |
PALUMBO P , MANETTA R , IZZO A , et al. Biparametric (bp) and multiparametric (mp) magnetic resonance imaging (MRI) approach to prostate cancer disease: a narrative review of current debate on dynamic contrast enhancement[J]. Gland Surg, 2020, 9 (6): 2235- 2247.
doi: 10.21037/gs-20-547 |
6 | LIU K W , LIU Z L , WANG X Y , et al. Prostate cancer diagnosis based on cascaded convolutional neural networks[J]. Chinese J Magn Reson, 2020, 37 (2): 152- 161. |
刘可文, 刘紫龙, 汪香玉, 等. 基于级联卷积神经网络的前列腺磁共振图像分类[J]. 波谱学杂志, 2020, 37 (2): 152- 161. | |
7 | VAFAIE R, ALIREZAIE J, BABYN P. Fully automated model-based prostate boundary segmentation using markov random field in ultrasound images[C]//Fremantle, WA, Australia: International Conference on Digital Image Computing Techniques and Applications (DICTA), 2012. |
8 | KWAK J T , SANKINENI S , XU S , et al. Correlation of magnetic resonance imaging with digital histopathology in prostate[J]. Int J Comput Ass Rad, 2016, 11 (4): 657- 666. |
9 | QIAN C J , WANG L , GAO Y Z , et al. In vivo MRI based prostate cancer identification with random forests and auto-context model[J]. Comput Med Imag Grap, 2014, 52, 44- 57. |
10 |
KORSAGER A S , FORTUNATI V , FEDDE VDL , et al. The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images[J]. Med Phys, 2015, 42 (4): 1614- 1624.
doi: 10.1118/1.4914379 |
11 |
TIAN Z Q , LIU L Z , ZHANG Z F , et al. Superpixel-based segmentation for 3D prostate MR images[J]. IEEE Trans Med Imag, 2016, 35 (3): 791- 801.
doi: 10.1109/TMI.2015.2496296 |
12 |
LI C M , XU C Y , GUI C F , et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE T Image Process, 2010, 19 (12): 3243- 3254.
doi: 10.1109/TIP.2010.2069690 |
13 | ZHANG Y D , PENG J C , LIU G , et al. Research on the segmentation method of prostate magnetic resonance image based on level set[J]. Chinese Journal of Scientific Instrument, 2017, 38 (2): 416- 424. |
张永德, 彭景春, 刘罡, 等. 基于水平集的前列腺磁共振图像分割方法研究[J]. 仪器仪表学报, 2017, 38 (2): 416- 424. | |
14 | ZHU Z H , YAN S J , RUAN Y , et al. Segmentation of prostate magnetic resonance images based on an improved distance regularized level set evolution (DRLSE) model[J]. Chinese J Magn Reson, 2020, 37 (4): 447- 455. |
朱泽华, 闫士举, 阮渊, 等. 基于改进DRLSE模型的前列腺磁共振图像分割[J]. 波谱学杂志, 2020, 37 (4): 447- 455. | |
15 |
LI C M , KAO C Y , GORE J C , et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE T Image Process, 2008, 17 (10): 1940- 1949.
doi: 10.1109/TIP.2008.2002304 |
16 |
JIANG H Y , FENG R J , GAO X H . Level set based on signed pressure force function and its application in liver image segmentation[J]. Wuhan University Journal of Natural Sciences, 2011, 16 (3): 265- 270.
doi: 10.1007/s11859-011-0748-5 |
17 |
ZHANG K H , SONG H H , ZHAND L . ZHANG. Active contours driven by local image fitting energy[J]. Pattern Recogn, 2010, 43 (4): 1199- 1206.
doi: 10.1016/j.patcog.2009.10.010 |
18 |
KARIMI D , ZENG Q , MATHUR P , et al. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images[J]. Med Image Anal, 2019, 57, 186- 196.
doi: 10.1016/j.media.2019.07.005 |
19 | MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Stanford, CA, USA: 2016 Fourth International Conference on 3D Vision (3DV), 2016. |
20 | OJALA T , PIETIKAINEN M , MAENPAA T . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE T Pattern Anal, 2002, 7 (24): 971- 987. |
21 | OSHER S , FEDKIW R . Level set methods and dynamic implicit surfaces[M]. New York: Springer-Verlag, 2002. |
22 |
ZHAO H K , CHAN T , MERRIMAN B , et al. A variational level setapproach to multiphase motion[J]. J Comput Phys, 1996, 127 (1): 179- 195.
doi: 10.1006/jcph.1996.0167 |
23 |
OTSU N . A threshold selection method from gray-level histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
doi: 10.1109/TSMC.1979.4310076 |
24 |
LI C M , HUANG R , DING Z H , et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE T Image Process, 2011, 20 (7): 2007- 2016.
doi: 10.1109/TIP.2011.2146190 |
25 | XU C Y, YEZZI A, PRINCE J L. On the relationship between parametric and geometric active contours[C]//Pacific Grove, CA, USA: Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000. doi: 10.1109/ACSSC.2000.911003. |
26 |
ZHANG K , ZHANG L , SONG H , et al. Active contours with selective local or global segmentation: A new formulation and level set method[J]. Image Vision Comput, 2010, 28 (4): 668- 676.
doi: 10.1016/j.imavis.2009.10.009 |
27 |
CHAN T F , VESE L A . Active contours without edges[J]. IEEE T Image Process, 2001, 10 (2): 266- 277.
doi: 10.1109/83.902291 |
28 |
GEERT L , ROBERT T , WENDY V D V , et al. Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge[J]. Med Image Anal, 2014, 18 (2): 359- 373.
doi: 10.1016/j.media.2013.12.002 |
29 |
MAHAPATRA D , BUHMANN J M . Visual saliency-based active learning for prostate magnetic resonance imaging segmentation[J]. J Med Imaging, 2016, 3 (1): 014003.
doi: 10.1117/1.JMI.3.1.014003 |
30 | KARIMI D , SAMEI G , KESCH C , et al. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models[J]. Int J Comput Ass Rad, 2018, 13 (4): 1- 9. |
[1] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[2] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[3] | CHEN Qun, YANG Zijian, CHENG Xinyi, JIA Siyi, DU Xiaoxia, WANG Mengxing. Application of Magnetic Resonance Imaging Technology in Pediatric Exercise Intervention Research [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 195-204. |
[4] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
[5] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[6] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
[7] | LI Pan,FANG Delei,ZHANG Junxia,MA Debei. Magnetic Resonance Compatibility Analysis Method of Surgical Robotic System Based on Image Quality Evaluation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 79-91. |
[8] |
De-gang TANG,Hong-chuang LI,Xiao-ling LIU,Lei SHI,Hai-dong LI,Chao-hui YE,Xin ZHOU.
A Simulation Study on the Effect of the High Permittivity Materials Geometrical Structure on the Transmit Field |
[9] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[10] | Yan MA, Cang-ju XING, Liang XIAO. Knee Joint Image Segmentation and Model Construction Based on Cascaded Network [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 184-195. |
[11] | Jun LUO, Sheng-ping LIU, Xing YANG, Jia-sheng WANG, Ye LI. Design of a 5 T Non-magnetic Magnetic Resonance Radio Frequency Power Amplifier [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 163-173. |
[12] | Ju-min ZHANG,Shi-zhen CHEN,Xin ZHOU. Dual-modal MRI T1-T2 Contrast Agent Based on Dynamic Organic Gadolinium Nanoparticles [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 11-19. |
[13] | Zhi-chao WANG,Ji-lei ZHANG,Yu ZHAO,Ting HUA,Guang-yu TANG,Jian-qi LI. CEST Imaging of the Abdomen with Neural Network Fitting [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 33-42. |
[14] | Han-wei WANG,Hao WU,Jing TIAN,Jun-feng ZHANG,Peng ZHONG,Li-zhao CHEN,Shu-nan WANG. The Diagnostic Value of Quantitative Parameters of T2/FLAIR Mismatch Sign in Evaluating the Molecular Typing of Lower-grade Gliomas [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 56-63. |
[15] | Long XIAO,Xiao-lei ZHU,Ye-qing HAN,Shi-zhen CHEN,Xin ZHOU. Design and Application of Micellar Magnetic Resonance Imaging Molecular Probe [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 474-490. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||