Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (3): 303-315.doi: 10.11938/cjmr20222988
• Articles • Previous Articles Next Articles
Ying-shan WANG1,Ao-qi DENG3,Jin-ling MAO1,Zhong-qi ZHU1,Jie SHI2,*(),Guang YANG1,Wei-wei MA4,Qing LU4,*(
),Hong-zhi WANG1,*(
)
Received:
2022-03-23
Published:
2022-09-05
Online:
2022-05-11
Contact:
Jie SHI,Qing LU,Hong-zhi WANG
E-mail:ghyyfsk@163.com;drluqingsjtu@163.com;hzwang@phy.ecnu.edu.cn
CLC Number:
Ying-shan WANG, Ao-qi DENG, Jin-ling MAO, Zhong-qi ZHU, Jie SHI, Guang YANG, Wei-wei MA, Qing LU, Hong-zhi WANG. Automatic Segmentation of Knee Joint Synovial Magnetic Resonance Images Based on 3D VNetTrans[J]. Chinese Journal of Magnetic Resonance, 2022, 39(3): 303-315.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
SMOLEN J S, ALETAHA D, BARTON A, et alRheumatoid arthritis[J]. Nat Rev Dis Primers, 2018,4 (1): 18001.
doi: 10.1038/nrdp.2018.1 |
2 | JIN S Y, LI M T, FANG Y F, et alChinese registry of rheumatoid arthritis (CREDIT): II. prevalence and risk factors of major comorbidities in Chinese patients with rheumatoid arthritis[J]. Arthritis ResTher, 2017,19 (1): 251. |
3 |
中华医学会风湿病学分会2018中国类风湿关节炎诊疗指南[J]. 中华内科杂志, 2018,57 (4): 242- 251.
doi: 10.3760/cma.j.issn.0578-1426.2018.04.004 |
ASSOCIATION C R2018 Chinese guideline for the diagnosis and treatment of rheumatoid arthritis[J]. Chin J Intern Med, 2018,57 (4): 242- 251.
doi: 10.3760/cma.j.issn.0578-1426.2018.04.004 |
|
4 |
SUGIMOTO H, TAKEDA A, KANO SAssessment of disease activity in rheumatoid arthritis using magnetic resonance imaging: quantification of pannus volume in the hands[J]. Bri J Rheumatol, 1998,37 (8): 854- 861.
doi: 10.1093/rheumatology/37.8.854 |
5 |
OSTERGAARD MDifferent approaches to synovial membrane volume determination by magnetic resonance imaging: manual versus automated segmentation[J]. Rheumatology, 1997,36 (11): 1166- 1177.
doi: 10.1093/rheumatology/36.11.1166 |
6 |
SAKASHITA T, KAMISHIMA T, KOBAYASHI Y, et alAccurate quantitative assessment of synovitis in rheumatoid arthritis using pixel-by-pixel, time-intensity curve shape analysis[J]. Br J Radiol, 2016,89 (1061): 20151000.
doi: 10.1259/bjr.20151000 |
7 |
FOTINOS-HOYER A K, GUERMAZI A, JARA H, et alAssessment of synovitis in the osteoarthritic knee: comparison between manual segmentation, semiautomated segmentation, and semiquantitative assessment using contrast-enhanced fat-suppressed T1-weighted MRI[J]. Magn Reson Med, 2010,64 (2): 604- 609.
doi: 10.1002/mrm.22401 |
8 |
PERRY T A, GAIT A, O’NEILL T W, et alMeasurement of synovial tissue volume in knee osteoarthritis using a semiautomated MRI-based quantitative approach[J]. Magn Reson Med, 2019,81 (5): 3056- 3064.
doi: 10.1002/mrm.27633 |
9 | WANG A, FRANKE A, WESARG S. Semi-automatic segmentation of JIA-induced inflammation in MRI images of ankle joints[C]// Medical Imaging 2019: Image Processing, SPIE, 2019, 10949: 875-881. |
10 |
ANDERSEN J K H, PEDERSEN J S, LAURSEN M S, et alNeural networks for automatic scoring of arthritis disease activity on ultrasound images[J]. RMD open, 2019,5 (1): e000891.
doi: 10.1136/rmdopen-2018-000891 |
11 |
CHRISTENSEN A B H, JUST S A, ANDERSEN J K H, et alApplying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients[J]. Ann Rheum Dise, 2020,79 (9): 1189- 1193.
doi: 10.1136/annrheumdis-2019-216636 |
12 |
IQBAL I, SHAHZAD G, RAFIQ N, et alDeep learning-based automated detection of human knee joint's synovial fluid from magnetic resonance images with transfer learning[J]. IET Image Processing, 2020,14 (10): 1990- 1998.
doi: 10.1049/iet-ipr.2019.1646 |
13 |
WONG L M, SHI L, XIAO F, et alFully automated segmentation of wrist bones on T2-weighted fat-suppressed MR images in early rheumatoid arthritis[J]. Quant Imag Med Surg, 2019,9 (4): 579.
doi: 10.21037/qims.2019.04.03 |
14 | 魏小娜, 邢嘉祺, 王振宇, 等基于改进U-Net的关节滑膜磁共振图像的分割[J]. 计算机应用, 2020,40 (11): 3340- 3345. |
WEI X N, XIN J Q, WANG Z Y, et alMagnetic resonance image segmentation of articular synovium based on improved U-Net[J]. Journal of Computer Applications, 2020,40 (11): 3340- 3345. | |
15 | 王振宇, 王颖珊, 毛瑾玲, 等基于Dense-UNet++的关节滑膜磁共振图像分割[J]. 波谱学杂志, 2022,39 (2): 208- 219. |
WANG Z Y, WANG Y S, MAO J L, et alMagnetic resonance images segmentation of synovium based on Dense-UNet++[J]. Chinese J Magn Reson, 2022,39 (2): 208- 219. | |
16 | WANG W X, CHEN C, DING M, et al. TransBTS: Multimodal brain tumor segmentation using transformer[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2021: 109-119. |
17 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2015: 3431-3440. |
18 | RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical image computing and computer-assisted intervention, Cham: Springer, 2015: 234-241. |
19 | ÇIçEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]// International conference on medical image computing and computer-assisted intervention. Springer, 2016: 424-432. |
20 | MILLETARI F, NAVAB N, AHMADI S-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 fourth international conference on 3D vision (3DV), IEEE, 2016: 565-571. |
21 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the Advances in Neural Information Processing Systems, 2017: 6000-6010. |
22 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[OL]. arXiv preprint arXiv: 2010.11929, 2020. |
23 | NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]// Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel: 2010: 807-814. |
24 | RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[J]. arXiv preprint arXiv: 1710.05941, 2017. |
25 | TAN M, LE Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]// International conference on machine learning, PMLR, 2019: 6105-6114. |
26 | YUAN L, CHEN Y, WANG T, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 558-567. |
27 | YUSHKEVICH P A, GAO Y, GERIG G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images[C]// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2016: 3342-3345. |
28 | HATAMIZADEH A, TANG Y, NATH V, et al. Unetr: Transformers for 3d medical image segmentation[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 574-584. |
[1] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
[2] | XUE Peiyang, GENG Chen, LI Yuxin, BAO Yifang, LU Yucheng, DAI Yakang. A Classification Method for Cerebral Aneurysms in TOF-MRA Based on Improved 3D ResNet50 Model [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 56-66. |
[3] | NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468. |
[4] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 341-361. |
[5] | Dai Junlong, He Cong, Wu Jie, Bian Yun. Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 151-161. |
[6] | YANG Yu, CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong. Spectrum Reconstruction for Laplace NMR: From Handcraft Regularization to Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 191-208. |
[7] | CHANG Bo, SUN Haoyun, GAO Qingyu, WANG Lijia. Research Progress on Cardiac Segmentation in Different Modal Medical Images by Traditional Methods and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 224-244. |
[8] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[9] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
[10] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
[11] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
[12] | LU Qiqi, LIAN Zifeng, LI Jialong, SI Wenbin, MAI Zhaohua, FENG Yanqiu. Magnetic Resonance R2* Parameter Mapping of Liver Based on Self-supervised Deep Neural Network [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 258-269. |
[13] | ZHANG Jiajun, LU Yucheng, BAO Yifang, LI Yuxin, GENG Chen, HU Fuyuan, DAI Yakang. An Automatic Segmentation Method of Cerebral Arterial Tree in TOF-MRA Based on DBCNet [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 320-331. |
[14] | TIAN Hui, WU Jie, BIAN Yun, ZHANG Zhiwei, SHAO Chengwei. Classification of Pancreatic Cystic Tumors Based on DenseNet and Transfer Learning [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 270-279. |
[15] | HU Xiaoyang, LIU Ying, CHEN Shu, DONG Binbin. Fusing Attention Mechanism with Mask RCNN for Recognition of Acoustic Neuroma and Meningioma in Cerebellopontine Angle [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 293-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||