| [1] |
HUANG M, ZHU J L, KAO Y C, et al. Multi-coil MRI image reconstruction based on ISTAVS-Net of physical model[J]. Chinese J Magn Reson, 2024, 41(4): 418-429.
|
|
黄敏, 朱俊琳, 考宇辰, 等. 基于物理模型的ISTAVS-Net多线圈MRI图像重建[J]. 波谱学杂志, 2024, 41(4): 418-429.
doi: 10.11938/cjmr20243109
|
| [2] |
CHEN W F. Parallel magnetic resonance imaging: past, present and future[J]. Chinese Journal of Biomedical Engineering, 2005, (6): 649-654.
|
|
陈武凡. 并行磁共振成像的回顾、现状与发展前景[J]. 中国生物医学工程学报, 2005, (6): 649-654.
|
| [3] |
LARKMAN D J, NUNES R G. Parallel magnetic resonance imaging[J]. Phys Med Biol, 2007, 52(7): R15.
|
| [4] |
PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42(5): 952-962.
pmid: 10542355
|
| [5] |
GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47(6): 1202-1210.
doi: 10.1002/mrm.10171
pmid: 12111967
|
| [6] |
ZHAO T, HU X. Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction[J]. Magn Reson Med, 2008, 59(4): 903-907.
doi: 10.1002/mrm.21370
pmid: 18383282
|
| [7] |
BLAIMER M, GUTBERLET M, KELLMAN P, et al. Virtual coil concept for improved parallel MRI employing conjugate symmetric signals[J]. Magn Reson Med, 2009, 61(1): 93-102.
doi: 10.1002/mrm.21652
pmid: 19097211
|
| [8] |
WANG W T, SU S, JIA S, et al. Reconstruction of simultaneous multi-slice MRI data by combining virtual conjugate coil technology and convolutional neural network[J]. Chinese J Magn Reson, 2020, 37(4): 407-421.
|
|
王婉婷, 苏适, 贾森, 等. 基于虚拟线圈和卷积神经网络的多层同时激发图像重建[J]. 波谱学杂志, 2020, 37(4): 407-421.
doi: 10.11938/cjmr20202800
|
| [9] |
FABIAN Z, TINAZ B, SOLTANOLKOTABI M. Humus-net: Hybrid unrolled multi-scale network architecture for accelerated MRI reconstruction[J]. Adv Neural Inf Process Syst, 2022, 35: 25306-25319.
|
| [10] |
GE R, YU X, CHEN Y, et al. Tc-kanrecon: High-quality and accelerated mri reconstruction via adaptive kan mechanisms and intelligent feature scaling[J]. arxiv preprint arxiv: 2408.05705, 2024.
|
| [11] |
AKÇAKAYA M, MOELLER S, WEINGÄRTNER S, et al. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging[J]. Magn Reson Med, 2019, 81(1): 439-453.
doi: 10.1002/mrm.27420
pmid: 30277269
|
| [12] |
ZHANG C, MOELLER S, DEMIREL O B, et al. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning[J]. NeuroImage, 2022, 256: 119248.
doi: 10.1016/j.neuroimage.2022.119248
|
| [13] |
ZHENG H R, WU Y, HE Q, et al. Fast and high-resolution magnetic resonance imaging on high field system[J]. Life Science Instruments, 2018, 16(Z1): 29-44+54.
|
|
郑海荣, 吴垠, 贺强, 等. 基于高场磁共振的快速高分辨成像[J]. 生命科学仪器, 2018, 16(Z1): 29-44+54.
|
| [14] |
KEBAILI A, LAPUYADE-LAHORGUE J, RUAN S. Deep learning approaches for data augmentation in medical imaging: a review[J]. J Imaging, 2023, 9(4): 81.
doi: 10.3390/jimaging9040081
|
| [15] |
YU X, WANG J, HONG Q Q, et al. Transfer learning for medical images analyses: A survey[J]. Neurocomputing, 2022, 489: 230-254.
doi: 10.1016/j.neucom.2021.08.159
|
| [16] |
CHEN Y, YANG X H, WEI Z, et al. Generative adversarial networks in medical image augmentation: a review[J]. Comput Biol Med, 2022, 144: 105382.
doi: 10.1016/j.compbiomed.2022.105382
|
| [17] |
GOODFELLOW I, POUGET-ABADIE J. Generative adversarial networks (GANs) for low-data MRI reconstruction[J]. Nat Mach Intell, 2019, 1(5): 236-245.
doi: 10.1038/s42256-019-0052-1
|
| [18] |
DENCK J, GUEHRING J, MAIER A, et al. Enhanced magnetic resonance image synthesis with contrast-aware generative adversarial networks[J]. J Imaging, 2021, 7(8): 133.
doi: 10.3390/jimaging7080133
|
| [19] |
NING X Z, HUANG Z, CHEN X Q, et al. Research on transformer super-resolution reconstruction algorithmfor ultrafast spatiotemporal encoding magnetic resonance imaging[J]. Chinese J Magn Reson, 2024, 41(4): 454-468.
|
|
宁欣宙, 黄臻, 陈西曲, 等. 用于超快时空编码MRI的Transformer超分辨率重建算法研究[J]. 波谱学杂志, 2024, 41(4): 454-468.
doi: 10.11938/cjmr20243110
|
| [20] |
ZHANG C, HOSSEINI S A H, WEINGÄRTNER S, et al. Optimized fast GPU implementation of robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction[J]. PloS one, 2019, 14(10): e0223315.
|
| [21] |
ROEMER P B, EDELSTEIN W A, HAYES C E, et al. The NMR phased array[J]. Magn Reson Med, 1990, 16(2): 192-225.
doi: 10.1002/mrm.1910160203
pmid: 2266841
|
| [22] |
WALSH D O, GMITRO A F, MARCELLIN M W. Adaptive reconstruction of phased array MR imagery[J]. Magn Reson Med, 2015, 43(5): 682-690.
doi: 10.1002/(ISSN)1522-2594
|