Chinese Journal of Magnetic Resonance ›› 2005, Vol. 22 ›› Issue (3): 321-341.
Received:
2005-02-04
Revised:
2005-03-28
Published:
2005-09-05
Online:
2005-09-05
Supported by:
中国科学院“百人计划”研究基金、国家自然科学基金资助项目(No.30470351).
CLC Number:
LIN Dong-Hai, HONG Jing. Mapping Protein-Ligand Interaction by NMR Techniques: A Review[J]. Chinese Journal of Magnetic Resonance, 2005, 22(3): 321-341.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Craik D J,Wilce J A. Studies of protein-ligand interactions by NMR. In “rotein NMR Techniques”(Ed.: Reid D G) [M]. New Jersey: Humana Press Inc,1997. 195-232. [2] Lian L Y ,Barsukov I L,Sutcliffe M J,et al. Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts[J]. Method Enzymol,1994,239: 657-699. [3] Lian L Y,Robert G C K. Effects of chemical exchange on NMR spectra,In "NMR of Macromolecules: A Practical Approach" (Ed.: Robert G C K) [M]. Oxford: Oxford University Press,1993. 153-182. [4] Feeney J,Birdsall B. NMR studies of protein-ligand interactions. In "NMR of Macromolecules: A Practical Approach." (Ed.: Robert G C K) [M]. Oxford: Oxford University Press,1993. 183-216. [5] Zuiderweg E R P. Mapping protein-protein interactions in solution by NMR spectroscopy[J]. Biochemistry,2002,41: 1-7. [6] Liao Xin-|li(廖新丽),Lin Dong-|hai(林东海). Protein Dynamics Studied by Heteronuclear Multi-dimensional NMR(用异核多维NMR技术研究蛋白质动力学)[J]. Chinese J Magn Reson(波谱学杂志),2004,21(4): 385-396. [7] Otting G,Wüthrich K. Heteronuclear filters in two-dimensional[1H,1H]-NMR spectroscopy: combined use with isotope labeling for studies of macromolecular conformation and intermolecular interactions[J]. Q Rev Biophys,1990,23: 39-96. [8] Breeze A L. Isotope-filtered NMR methods for the study of biomolecular structure and interactions[J]. Prog NMR Spectrosc,2000,36: 323-372. [9] Güntert P,Mumenthaler C,Wüthrich K. Torsion angle dynamics for NMR structure calculation with new program DYANA[J]. J Mol Biol,1997,273: 283-298. [10] Brunger A T,Adams P D,Clore G M,et al. Crystallography & NMR system: A new software suite for macromolecular structure determination[J]. Acta Cryst, 1998,D54: 905-921.[11] Braunger A T. X-PLOR,Version 3.1 A system for X-ray Crystallography and NMR[M]. New Haven: Yale University Press,1993. [12] Spitzfaden C,Braun W,Wider G,et al. Determination of the NMR solution structure of the cyclophilin A-cyclosporin A complex[J]. J Biomol NMR,1994,4: 463-482. [13] Güntert P,Braun W,Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA,HABAS and GLOMSA[J]. J Mol Biol,1991,217: 517-530. [14] de Alba E,Tjandra N. NMR dipolar couplings for the structure determination of biopolymers in solution[J]. Prog NMR Spectrosc,2002, 40: 175-197. [15] Fesik S W,Neri P,Meadows R,et al. A model of the cyclophilin/cyclosporin A (CSA) complex from NMR and X-ray data suggests that CSA binds as a transition-state analog[J]. J Am Chem Soc,1992,114: 3 165-3 166. [16] Bennion C,Connolly S,Gensmantel N P,et al. Design and synthesis of some substrate analogue inhibitors of phospholipase A2 and investigations by NMR and molecular modeling into the binding interactions in the enzyme-inhibitor complex[J]. J Med Chem,1992,35: 2 939-2 951. [17] Lippins G,Hallenga K, Van Belle D,et al. Transfer nuclear Overhauser effect study of the conformation of oxytocin bound to bovine neurophysin[J]. Biochemistry,1993,32: 9 423-9 434. [18] Marcel J,Blommers J,Simon R. NMR of Weakly Binding Ligands. In “BioNMR in Drug Research” (Ed.: Zerbe O) [M]. New York: Wiley VCH,2003. 355-371. [19] Wang Y-S,Liu D,Wyss D F. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening[J]. Magn Reson Chem,2004,42: 485-489. [20] Meyer B,Peters T. NMR Spectroscopy Techniques for Screening and Identifying Ligand Binding to Protein Receptors[J]. Angew Chem Int Edit,2003,42: 864-890. [21] Hideo T,Tamiji N,Keiichiro K,et al. A novel NMR method for determining the interfaces of large protein-protein complexes[J]. Nat Struct Biol,2000,7 : 220-223. [22] Dalvit C,Fogliattob G P,Stewartb A,et al. WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability[J]. J Biomol NMR,2001,21: 349-359. [23] Dalvit C,Pevarello P,Tato M,et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water [J]. J Biomol NMR,2000,18: 65-68.[24] Derrick T S,McCord E F,Larive C K. Analysis of Protein/Ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background[J]. J Mag Reson, 2002,155: 217-225. [25] Liu M,Nicholson J K,Lindon J C. Analysis of drug-protein binding using nuclear magnetic resonance based molecular diffusion measurements[J]. Anal Comm,1997,34: 225-228. [26] Hajduk P J,Olejniczak E T,Fesik S W,et al. One-Dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules[J]. J Am Chem Soc,1997,119: 12 257-12 261. [27] Dingley A J,Mackay J P,Shaw G L,et al. Measuring macromolecular diffusion using heteronuclear multiple-quantum pulsed-fieldgradient NMR[J]. J Biomol NMR,1997,10: 1-8. [28] Tillett M L,Horsfield M A,Lian L Y,et al. Protein-ligand interaction measured by 15N-filtered diffusion experiments[J]. J Biomol NMR, 1999,13: 223-232. [29] Moore J M. NMR techniques for characterization of ligand binding: utility for lead generation and optimization in drug discovery[J]. Biopolymers, 1999,51: 221-243. [30] Jahnke W,Perez L B,Paris C G,et al. Second-site NMR screening with a spin-labeled first ligands[J]. J Am Chem Soc,2000,122: 7 394-7 395. [31] Pellecchia M,Montgomery D L,Stevens S Y,et al. Structural insights into substrate binding by the molecular chaperone DnaK[J]. Nat Struct Biol,2000,7: 298-303. [32] Stockman B,Dalvit C. NMR screening techniques in drug discovery and drug design[J]. Prog NMR Spectrosc,2002,41: 187-231. [33] Hajduk P J,Meadows R P,Fesik S W. Discovering high-affinity ligands for proteins[J]. Science,1997,278: 497-499. [34] Hajduk P J,Dinges J,Miknis G F,et al. NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein[J]. J Med Chem,1997,40: 3 144-3 150. [35] van Nuland N A,Kroon G J,Dijkstra K,et al. The NMR determination of the IIA (mtl) binding site on HPr of the Escherichia coli phosphoenol pyruvate- dependent phosphotransferase system[J]. Febs Lett,1993,315: 11-15. [36] Dempsey C E. Hydrogen exchange in peptides and proteins using NMR spectroscopy[J]. Prog NMR Spectrosc,2001,39: 135-170. [37] Miller S,Janin J,Lesk A M,et al. Interior and surface of monomeric proteins[J]. J Mol Biol,1987,196: 641-656. [38] Bai Y,Milne J S,Mayne L,et al. Primary structure effects on peptide group hydrogen exchange[J]. Protein Struct Func Gen,1993,17: 75-86. [39] Pellecchia M,Meininger D,Shen A L,et al. SEA-TROSY (Solvent Exposed Amides with TROSY): a method to resolve the problem of spectral overlap in very large proteins[J]. J Am Chem Soc,2001,123: 4 633-4 634. [40] Lin D. Clean SEA-TROSY Experiments to map solvent exposed amides in large proteins[J]. Chin J Chem,2004,22: 1395-1398. [41] Lin D,Sze K H,Cui Y F,et al. Clean SEA-HSQC: a method to map solvent amides in large non-deuterated proteins with gradientenhanced HSQC[J]. J Biomol NMR,2002,23: 317-322. [42] Pellecchia M,Sem D,Wüthrich K. NMR in drug discovery[J]. Nat Rev Drug Discov,2002,11: 211-219. [43] Shuker S B,Hajduk P J,Meadows R P,et al. Discovery high-affinity ligands for proteins: SAR-by-NMR[J]. Science,1996,274: 1 531-1 534. [44] Coles M,Heller M,Kessler H. NMR-based screening technologies[J]. Drug Discov Today,2003,8: 803-810. [45] Stockman B J,Dalvit C. NMR screening techniques in drug discovery and drug design[J]. Prog NMR Spectrosc,2002,41: 187-231. [46] Stockman B J. NMR spectroscopy as a tool for structure-based drug design[J]. Prog NMR Spectrosc,1998,33: 109-151. [47] Moore J M. NMR screening in drug discovery[J]. Curr Opin Biotech,1999,10: 54-58. [48] Roberts G C K. NMR spectroscopy in structure-based drug design[J]. Curr Opin Biotech,1999,10: 42-47. [49] Lepre C A. Strategies for NMR screening and library design. In “BioNMR in Drug Research” (Ed.: Zerbe O)[M]. New York: Wiley VCH, 2003. 391-415. [50] Klaus W,Senn H. Strategies for hit finding using NMR. In “BioNMR in Drug Research” (Ed.: Zerbe O)[M]. New York: Wiley VCH,2003. 417-437. [51] Blommers M J J,Florsheimer A,Jahnke W. Strategies for drug discovery using NMR. In “BioNMR in Drug Research”(Ed.: Zerbe O) [M]. New York: Wiley VCH,2003. 439-457. [52] Lepre C A,Moore J M,Peng J W. Theory and application of NMR-based screening in pharmaceutical research[J]. Chem Rev,2004,104: 3 641-3 676. [53] Ross A,Senn H. Automation of biomolecular NMR screening[J]. Curr Top Med Chem,2003,3: 55-67. [54] Hajduk P J,Burns D J. Integration of NMR and high-throughput screening[J]. Comb Chem High T Scr,2002,5: 613-621. [55] Feng Rei(冯锐),Xie Hua(谢华),Ren Da-zhou(任大周). Application of Cryogenic NMR Probes(低温NMR探头的应用)[J]. Chinese J Magn Reson(波谱学杂志),2002,19: 447-454.[56] Pervushin K,Riek R,Wider G,et al. Attenuated T2- relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution[J]. Proc Natl Acad Sci USA, 1997,94: 12 366-12 371. [57] Flaux J,Bertelsen E B,Horwich A L,et al. NMR analysis of a 900K GroEL-GroES complex[J]. Nature,2002,418: 207-211. [58] Riek R,Wider G,Pervushin K,et al. Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules[J]. Proc Natl Acad Sci USA,1999,96: 4 918-4 923. |
[1] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[2] | DU Qunjie. Experimental Study on Accurate Determination of Shale Porosity by Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 275-284. |
[3] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[4] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[5] | LI Yujiang, ZHAO Wei, TAO Le, LU Bohua, ZHENG Guo, ZHANG Haiyan, GUO Xiaohe, ZHAO Tianzeng. NMR Data Analysis of Acarbose [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 184-194. |
[6] | ZHANG Jiayu, NIE Wenbo, TU Zhao, ZHENG Limin, WANG Yan, YANG Chunsheng. Three-Dimensional Structures of 3/4/5-O-feruloylquinic Acids by NMR Spectroscopy and Quantum Chemistry Calculation [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 47-55. |
[7] | SHEN Xueyuan, WANG Ruichen, QI Guodong, XU Jun, DENG Feng. Design of in situ Solid-State NMR Rotor Inserts and Their Application to Catalytic Reactions [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 13-21. |
[8] | SHEN Zhiqiang, DENG Yabo, YANG Peiju, HU Xiaoxue, HUANG Xiaojuan, XU Chuanzhi, SONG Huanling. Design and Application of an in situ NMR Device for Light-Induced Reaction Systems [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 22-33. |
[9] | LIU Hongbing, LIU Huili, LUO Liting, SUN Lijuan, CHEN Lei. Identification and Structural Characterization of an Unknown Trace Degradation Impurity in Cabazitaxel Injection by LC-DAD-SPE-NMR/MS [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 34-46. |
[10] | LI Mingdao, YAO Shouquan, XU Juncheng, LV Xinglong, HE Fengcheng, JIANG Yu. Design of the Handheld NMR Console [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 257-265. |
[11] | WANG Xingle, SHAO Zhengze, DONG Hongchun, WEI Daxiu, CHEN Qun, YAO Yefeng. Studies on the 1H NMR Spectral Features of Hydrogen Molecules in the Interstices of SiO2 Particles [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 315-321. |
[12] | YANG Yu, CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong. Spectrum Reconstruction for Laplace NMR: From Handcraft Regularization to Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 191-208. |
[13] | MA Yingying, ZHANG Gong, LIAO Zhongshu. A Method for Improving the Measurement Accuracy of Nuclear Magnetic Resonance Fast Relaxation Signal [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 162-172. |
[14] | ZHU Xiaofeng, ZHAO Zhihong, TAN Rui, ZHOU Long, WANG Yichuan, LIU Wenjing, ZHANG Minghui, LIU Huabing. Water Migration Characteristics of Pinus Sylvestris During the Drying Process Studied by Single-sided Nuclear Magnetic Resonance [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 173-183. |
[15] | WANG Ziwen, XIN Jiaxiang, WEI Daxiu, YAO Yefeng. Preparation Efficiency of Singlet States in Multi-spin Systems with Different Coupling Configurations [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 67-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||