Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (2): 123-132.doi: 10.11938/cjmr20212946
• Articles • Previous Articles Next Articles
Shu ZENG1,2,Shu-tao XU1,*(),Ying-xu WEI1,Zhong-min LIU1,*(
)
Received:
2021-09-08
Published:
2022-06-05
Online:
2021-09-22
Contact:
Shu-tao XU,Zhong-min LIU
E-mail:xushutao@dicp.ac.cn;liuzm@dicp.ac.cn
CLC Number:
Shu ZENG, Shu-tao XU, Ying-xu WEI, Zhong-min LIU. Investigation of the Ethanol Dehydration to Ethene Reaction on H-SSZ-13 Molecular Sieve by in situ Solid-state NMR Spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 123-132.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
FARRELL A E, PLEVIN R J, TURNER B T, et al Ethanol can contribute to energy and environmental goals[J]. Science, 2006, 311 (5760):506-508.
doi: 10.1126/science.1121416 |
2 |
TIAN P, WEI Y X, YE M, et al Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal, 2015, 5 (3):1922-1938.
doi: 10.1021/acscatal.5b00007 |
3 | BI J D, GUO X W, LIU M, et al High effective dehydration of bio-ethanol into ethylene over nanoscale HZSM-5 zeolite catalysts[J]. Cataly Today, 2010, 149 (1, 2):143-147. |
4 |
ARAI H, SAITOY, YONEDA Y Ethanol dehydration on alumina catalysts Ⅱ. The infrared study on adsorption of diethyl ether over alumina[J]. J Catal, 1968, 10, 128-133.
doi: 10.1016/0021-9517(68)90164-4 |
5 |
GAYUBO A G, TARRIO A M, AGUAYO A T, et al Kinetic modelling of the transformation of aqueous ethanol into hydrocarbons on a HZSM-5 zeolite[J]. Ind Eng Chem Res, 2001, 40 (16):3467-3474.
doi: 10.1021/ie001115e |
6 |
KWAK J H, MEI D H, PEDEN C H F, et al (100) facets of γ-Al2O3: The active surfaces for alcohol dehydration reactions[J]. Catal Lett, 2011, 141 (5):649-655.
doi: 10.1007/s10562-010-0496-8 |
7 | TRET'YAKOV V F, MAKARFI Y I, TRET'YAKOV K V, et al The catalytic conversion of bioethanol to hydrocarbon fuel: A review and study[J]. Catalysis in Industry, 2011, 2 (4):402-420. |
8 | SONG Z X, TAKAHASHI A, NAKAMURA I, et al Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Appl Catals A-Gen, 2010, 384 (1, 2):201-205. |
9 |
DAI W L, SUN X M, TANG B, et al Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13[J]. J Catal, 2014, 314, 10-20.
doi: 10.1016/j.jcat.2014.03.006 |
10 | XU S T, ZHI Y C, HAN J F, et al Advances in catalysis for methanol-to-olefins conversion[J]. Adv Catal, 2017, 61, 37-122. |
11 |
ALEXOPOULOS K, JOHN M, VAN DER BORGHT K, et al DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5[J]. J Catal, 2016, 339, 173-185.
doi: 10.1016/j.jcat.2016.04.020 |
12 |
KIM S, ROBICHAUD D J, BECKHAM G T, et al Ethanol dehydration in HZSM-5 studied by density functional theory: Evidence for a concerted process[J]. J Phys Chem A, 2015, 119 (15):3604-3614.
doi: 10.1021/jp513024z |
13 |
PHUNG T K, BUSCA G Diethyl ether cracking and ethanol dehydration: Acid catalysis and reaction paths[J]. Chem Eng J, 2015, 272, 92-101.
doi: 10.1016/j.cej.2015.03.008 |
14 |
CHIANG H, BHAN A Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites[J]. J Catal, 2010, 271 (2):251-261.
doi: 10.1016/j.jcat.2010.01.021 |
15 |
ZHANG M H, YU Y Z Dehydration of ethanol to ethylene[J]. Ind Eng Chem Res, 2013, 52 (28):9505-9514.
doi: 10.1021/ie401157c |
16 |
SUN J, WANG Y Recent advances in catalytic conversion of ethanol to chemicals[J]. Acs Catal, 2014, 4 (4):1078-1090.
doi: 10.1021/cs4011343 |
17 |
NGUYEN T M, LE VAN MAO R Conversion of ethanol in aqueous solution over ZSM-5 zeolites: Study of the reaction network[J]. Appl Catal, 1990, 58 (1):119-129.
doi: 10.1016/S0166-9834(00)82282-4 |
18 |
KONDO J N, ITO K, YODA E, et al An ethoxy intermediate in ethanol dehydration on bronsted acid sites in zeolite[J]. J Phy Chem B, 2005, 109 (21):10969-10972.
doi: 10.1021/jp050721q |
19 |
WANG W, JIAO J, JIANG Y J, et al Formation and decomposition of surface ethoxy species on acidic zeolite Y[J]. Chem Phys Chem, 2005, 6 (8):1467-1469.
doi: 10.1002/cphc.200500262 |
20 |
ZHOU X, WANG C, CHU Y Y, et al Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite[J]. Nat Commun, 2019, 10 (1):1961-1961.
doi: 10.1038/s41467-019-09956-7 |
21 |
ZENG S, LI J J, WANG N, et al Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR[J]. Energ Fuel, 2021, 35 (15):12319-12328.
doi: 10.1021/acs.energyfuels.1c02151 |
22 |
MOWER P, FRILETTER V, MAATMAN R, et al Catalysis by crystalline aluminosilicates Ⅱ. Molecular-shape selective reactions[J]. J Catal, 1962, 1, 307-312.
doi: 10.1016/0021-9517(62)90058-1 |
23 |
CSICSERY S M Shape-selective catalysis in zeolites[J]. Zeolites, 1984, 4 (3):202-213.
doi: 10.1016/0144-2449(84)90024-1 |
24 | DEGNAN T The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. J Catal, 2003, 216 (1, 2):32-46. |
25 |
TEKETEL S, LUNDEGARRD L F, SKISTAD W, et al Morphology-induced shape selectivity in zeolite catalysis[J]. J Catal, 2015, 327, 22-32.
doi: 10.1016/j.jcat.2015.03.013 |
26 |
WU P F, YANG M, SUN L J, et al Synthesis of nanosized SAPO-34 with the assistance of bifunctional amine and seeds[J]. Chem Commun, 2018, 54 (79):11160-11163.
doi: 10.1039/C8CC05871G |
27 | LI J Z, WEI Y X, CHEN J R, et al Cavity controls the selectivity: insights of confinement effects on MTO reaction[J]. ACS Catal, 2014, 5 (2):661-665. |
28 |
ZHANG W N, CHEN J R, XU S T, et al Methanol to olefins reaction over cavity-type zeolite: Cavity controls the critical intermediates and product selectivity[J]. ACS Catal, 2018, 8 (12):10950-10963.
doi: 10.1021/acscatal.8b02164 |
29 |
ZHOU Y, QI L, WEI Y, et al Comparative investigation of the MTH induction reaction over HZSM-5 and HSAPO-34 catalysts[J]. Mol Catal, 2017, 433, 20-27.
doi: 10.1016/j.mcat.2017.02.018 |
30 |
WANG L Y, ZHU D L, WANG J, et al Embryonic zeolite-assisted synthesis of SSZ-13 with superior efficiency and their excellent catalytic performance[J]. J Mater Chem A, 2021, 9, 15238-15245.
doi: 10.1039/D1TA01452H |
31 | YANG Y N, WANG X L, YAO Y F The effects of reaction environment on photocatalytic methanol reforming studied by operando nuclear magnetic resonance spectroscopy[J]. Chinese J Magn Reson, 2020, 37 (1):104-113. |
杨以宁, 王雪路, 姚叶峰 原位核磁共振技术研究反应环境对光催化甲醇重整过程的影响[J]. 波谱学杂志, 2020, 37 (1):104-113. | |
32 | LIU W Q, SONG Y H, WANG X L, et al In operando nuclear magnetic resonance spectroscopy study on photocatalytic methanol reforming[J]. Chinese J Magn Reson, 2019, 36 (3):298-308. |
刘文卿, 宋艳红, 王雪璐, 等 光催化甲醇重整机理的原位核磁共振研究[J]. 波谱学杂志, 2019, 36 (3):298-308. | |
33 |
HUNGER M, HORVATH T Conversion of propan-2-ol on zeolite LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions[J]. J Catal, 1997, 167 (1):187-197.
doi: 10.1006/jcat.1997.1562 |
34 | WANG W, JIANG Y J, HUNGER M Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy[J]. Catal Today, 2006, 113 (1, 2):102-114. |
35 |
HAW J F, NICHOLAS J B, SONG W G, et al Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5[J]. J Am Chem Soc, 2000, 122 (19):4763-4775.
doi: 10.1021/ja994103x |
36 |
THURBER K R, TYCKO R Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder[J]. J Magn Reson, 2009, 196 (1):84-87.
doi: 10.1016/j.jmr.2008.09.019 |
37 |
HOU G J, YAN S, TREBOSC J, et al Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids[J]. J Magn Reson, 2013, 232, 18-30.
doi: 10.1016/j.jmr.2013.04.009 |
38 |
SUN T, CHEN W, XU S, et al The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite[J]. Chem, 2021,
doi: 10.1016/j.chempr.2021.05.023 |
39 |
STEPANOV A G, LUZGIN M V, ROMANNIKOV V N, et al The nature, structure, and composition of adsorbed hydrocarbon products of ambient temperature oligomerization of ethene on acidic zeolite H-ZSM-5[J]. J Catal, 1998, 178, 466-477.
doi: 10.1006/jcat.1998.2172 |
40 |
FRIDGEN T D, MCMAHON T B The reaction of protonated dimethyl ether with dimethyl Ether: temperature and isotope effects on the methyl cation transfer reaction forming trimethyloxonium cation and methanol[J]. J Am Chem Soc, 2001, 123 (17):3980-3985.
doi: 10.1021/ja002972c |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[3] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[4] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[5] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[6] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[7] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | HE Fengcheng, LI Mingdao, LV Xinglong, YAO Shouquan, JIANG Yu. Software Design of the Handheld NMR Spectrometer Console [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | . Structural Identification and Complete NMR Spectral Assignments of 4-Isopropoxy-1-(trifluoroacetyl)naphthalene [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
[12] | SUN Haoyun, WANG Lijia. Application of 3D ELD_MobileNetV2 Incorporating Attention Mechanism and Dilated Convolution in Hepatic Nodules Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 130-142. |
[13] | WEI Zhihong, KONG Xudong, KONG Yan, YAN Shiju, DING Yang, WEI Xianding, KONG Dong, YANG Bo. Application of Generative Adversarial Networks Based on Global and Local Feature Information in Hippocampus Segmentation [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 143-153. |
[14] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[15] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||