Chinese Journal of Magnetic Resonance ›› 2022, Vol. 39 ›› Issue (1): 43-55.doi: 10.11938/cjmr20212908
• Articles • Previous Articles Next Articles
Nan WANG1,Yuan-jun WANG1,*(),Peng LIAN2,*(
)
Received:
2021-04-15
Published:
2022-03-05
Online:
2021-07-14
Contact:
Yuan-jun WANG,Peng LIAN
E-mail:yjusst@126.com;lianpeng_crcc@163.com
CLC Number:
Nan WANG,Yuan-jun WANG,Peng LIAN. Prediction of Preoperative T Staging of Rectal Cancer Based on Radiomics[J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 43-55.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Feature selection results
特征名称 | 系数 | 特征详情 |
灰度相关矩阵高灰度依赖程度(original_gldm_LargeDependenceHighGrayLevelEmphasis) | 0.0318 | 灰度相关矩阵高灰度依赖程度 |
伸长率(original_shape_Elongation) | 0.0043 | ROI形状中两个最大的主成分之间的关系 |
平面度(original_shape_Flatness) | ?0.0448 | ROI形状中最大和最小主成分之间的关系 |
最大2D直径(列)(original_shape_Maximum2DDiameterColumn) | 0.0616 | 冠状平面中肿瘤表面网格顶点之间最大的欧几里得距离 |
最大2D直径(切片)(original_shape_Maximum2DDiameterSlice) | 0.0431 | 轴向平面中肿瘤表面网格顶点之间最大的欧几里得距离 |
短轴长(original_shape_MinorAxisLength) | 0.1205 | 包围ROI的椭球的第二轴长 |
表面积与体积之比(original_shape_SurfaceVolumeRatio) | ?0.0384 | 较低的值表示更紧凑的球形形状 |
1 | VUIK F E, NIEUWENBURG S A, BARDOU M, et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years[J]. Gut, 2019, 68(10): gutjnl-2018-317592. |
2 | GLOBAL BURDEN OF DISEASE CANCER COLLABORATION . Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016:a systematic analysis for the global burden of disease study[J]. JAMA On Col, 2018, 4 (11): 1553- 1568. |
3 |
CONNELL L C , MOTA J M , BRAGHIROLI M I , et al. The rising incidence of younger patients with colorectal cancer: questions about screening, biology, and treatment[J]. Curr Treat Options Oncol, 2017, 18 (4): 23.
doi: 10.1007/s11864-017-0463-3 |
4 |
PETERSE E F P , MEESTER R G S , SIEGEL R L , et al. The impact of the rising colorectal cancer incidence in young adults on the optimal age to start screening: Microsimulation analysis I to inform the American Cancer Society colorectal cancer screening guideline[J]. Cancer, 2018, 124 (14): 2964- 2973.
doi: 10.1002/cncr.31543 |
5 |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41 (1): 19- 28.
doi: 10.3760/cma.j.issn.0253-3766.2019.01.005 |
6 |
ENGSTROM P F , ARNOLETTI J P , BENSON A B , et al. NCCN clinical practice guidelines in oncology: rectal cancer[J]. J Natl Compr Canc Ne, 2009, 7 (8): 838- 881.
doi: 10.6004/jnccn.2009.0057 |
7 |
LAMBIN P , RIOS-VELAZQUEZ E , LEIJENAAR R , et al. Radiomics: Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48 (4): 441- 446.
doi: 10.1016/j.ejca.2011.11.036 |
8 |
徐从斌. MRI与CT在直肠癌诊断及术前分期中价值探究[J]. 影像研究与医学应用, 2018, 2 (24): 152- 153.
doi: 10.3969/j.issn.2096-3807.2018.24.092 |
9 |
CUI S F , WANG X S . The accuracy of MRI in preoperative T staging diagnosis of rectal cancer[J]. Chin J Colorec Dis (Electronic Edition), 2014, 3 (5): 29- 36.
doi: 10.3877/cma.j.issn.2095-3224.2014.05.09 |
崔书发, 王锡山. 术前应用MRI评估直肠癌T分期的价值[J]. 中华结直肠疾病电子杂志, 2014, 3 (5): 29- 36.
doi: 10.3877/cma.j.issn.2095-3224.2014.05.09 |
|
10 |
LIANG C S , HUANG Y Q , HE L , et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage Ⅰ-Ⅱ and stage Ⅲ-Ⅳ colorectal cancer[J]. Oncotarget, 2016, 7 (21): 31401- 31412.
doi: 10.18632/oncotarget.8919 |
11 |
DOU Y F , TANG X F , LIU Y Y , et al. T stage prediction of colorectal tumor based on multiparametric functional images[J]. Transl Cancer Res, 2020, 9 (2): 522- 528.
doi: 10.21037/tcr.2019.11.41 |
12 |
KIM J , OH J E , LEE J , et al. Rectal cancer: Toward fully automatic discrimination of T2 and T3 rectal cancers using deep convolutional neural network[J]. Int J Imaging Syst Technol, 2019, 29 (3): 247- 259.
doi: 10.1002/ima.22311 |
13 |
XU X P , WANG H J , DU P , et al. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors[J]. J Magn Reson Imaging, 2019, 50 (6): 1893- 1904.
doi: 10.1002/jmri.26749 |
14 |
YUSHKEVICH P A , PIVEN J , HAZLETT H C , et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31 (3): 1116- 1128.
doi: 10.1016/j.neuroimage.2006.01.015 |
15 |
BREIMAN L . Random forest[J]. Machine Learning, 2001, 45 (1): 5- 32.
doi: 10.1023/A:1010933404324 |
16 | LIAW A , WIENER M . Classification and regression by randomforest[J]. R News, 2002, (2, 3): 18- 22. |
17 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
18 |
VAN GRIETHUYSEN J J M , FEDOROV A , PARMAR C , et al. Computational radiomics system to decode the radiographic phenotype[J]. Cancer Res, 2017, 77 (21): e104- e107.
doi: 10.1158/0008-5472.CAN-17-0339 |
19 | KOOPERBERG C , RUCZINSKI I . Identifying interacting SNPs using Monte Carlo logic regression[J]. Genetic Epidemiology, 2010, 28 (2): 157- 170. |
20 | 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012. |
21 | SAUNDERS C , STITSON M O , WESTON J , et al. Support vector machine[J]. Computer Ence, 2002, 1 (4): 1- 28. |
22 | BAESENS B , VIAENE S , VAN GESTEL T , et al. Least squares support vector machine classifiers: an empirical evaluation[J]. DTEW Research Report 0003, 2000, 1- 16. |
23 |
FRIEDMAN J H . Greedy function approximation: A gradient boosting machine[J]. Ann Statist, 2001, 29 (5): 1189- 1232.
doi: 10.1214/aos/1013203450 |
24 | FRIEDMAN J H . Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38 (4): 367- 378. |
25 | PEDREGOSA F , VAROQUAUX G , GRAMFORT A , et al. Scikit-learn: machine learning in python[J]. J Mach Learn Res, 2011, 2825- 2830. |
26 | WANG J , LI Z H , SHEN F , et al. The value of high resolution T2WI-based radiomics in the preoperative staging of rectal cancer[J]. Radiol Practice, 2019, 34 (11): 1251- 1254. |
王进, 李智慧, 沈浮, 等. 基于高分辨T2WI的影像组学对直肠癌术前分期的应用价值[J]. 放射学实践, 2019, 34 (11): 1251- 1254. | |
27 |
LAMBIN P , LEIJENAAR R T H , DEIST T M , et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14, 749- 762.
doi: 10.1038/nrclinonc.2017.141 |
[1] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[2] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[3] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[4] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
[5] | CHEN Qun, YANG Zijian, CHENG Xinyi, JIA Siyi, DU Xiaoxia, WANG Mengxing. Application of Magnetic Resonance Imaging Technology in Pediatric Exercise Intervention Research [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 195-204. |
[6] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[7] | YANG Jiacheng, WANG Yuanjun. Improved Constrained Spherical Deconvolution for Microstructural Imaging of Brain Gray Matter [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 67-79. |
[8] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
[9] | HUANG Min, ZHU Junlin, KAO Yuchen, ZHOU Dao, TANG Qiling. Multi-Coil MRI Image Reconstruction Based on ISTAVS-Net of Physical Model [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 418-429. |
[10] | GUO Xu, WANG Chenxu, ZHANG Xin, CHANG Yan, CUI Feng, GUO Qingqian, HU Tao, YANG Xiaodong. Semantic Audiovisual Single-trial Detection Based on the New Generation of Magnetoencephalography [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 304-314. |
[11] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[12] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
[13] | ZHOU Tianli, ZHANG Dian, WU Jizhi, JIA Huihui, CHANG Yan, SHENG Mao, YANG Xiaodong. Application of MRI-based Finite Element Modeling and Analysis in Periacetabular Osteotomy [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 397-409. |
[14] | CHEN Mengying, WU Yupeng, PANG Qifan, ZHONG Haodong, LI Gaiying, LI Jianqi. Simultaneously Neuromelanin-sensitive Imaging and Quantitative Susceptibility Mapping in the Whole Brain [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 385-396. |
[15] | REN Hongjin, MA Yan, XIAO Liang. Knee Joint Model Construction and Local Specific Absorption Rate Estimation Based on Generative Adversarial Networks [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 410-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||