Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (2): 139-150.doi: 10.11938/cjmr20233081cstr: 32225.14.cjmr20233081
• Articles • Previous Articles Next Articles
ZHANG Haowei, WANG Yuncheng, LIU Ying*()
Received:
2023-09-08
Published:
2024-06-05
Online:
2023-11-22
Contact:
*Tel: 18602168660, E-mail: ling2431@163.com.
CLC Number:
ZHANG Haowei, WANG Yuncheng, LIU Ying. Brain Age Assessment of Patients with Major Depressive Disorder Based on Convolutional Neural Network[J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 139-150.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
The parameters of MRI in different hospitals
医院序号 | 扫描仪 | 圈 | 重复时间/ms | 回波时间/ms | 反转角/° | 厚度/mm | 层数 | 时间点/s |
---|---|---|---|---|---|---|---|---|
1 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 90 | 4.0/0.8 | 30 | 210 |
2 | Philips Achieva 3 T | 8 | 2000 | 30 | 90 | 4.0/0 | 37 | 200 |
3 | Siemens 1.5 T | 16 | 2000 | 40 | 90 | 5.0/1.2 | 26 | 150 |
3 | GE Signa 3 T | 32 | 2000 | 30 | 90 | 5.0/0 | 22 | 100 |
6 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 70 | 4/0 | 33 | 180 |
7 | GE discovery MR750 | 8 | 2000 | 30 | 90 | 3.2/0 | 37 | 184 |
8 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 3.0/0 | 35 | 200 |
9 | GE Discovery MR750 3.0 T | 8 | 2000 | 25 | 90 | 3.0/1.0 | 35 | 200 |
10 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 90 | 3.0/1.52 | 32 | 212 |
11 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 5 | 33 | 200 |
12 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 5 | 33 | 240 |
13 | GE Excite 1.5 T | 16 | 2500 | 35 | 90 | 4 /0 | 36 | 150 |
14 | Siemens Tim Trio 3 T | 32 | 2500 | 25 | 90 | 3.5/0 | 39 | 200 |
15 | Siemens Verio 3.0 T MRI | 12 | 2000 | 25 | 90 | 4/0 | 36 | 240 |
16 | GE Signa 3 T | 8 | 2000 | 30 | 90 | 5/0 | 30 | 200 |
17 | GE Signa 3 T | 8 | 2000 | 40 | 90 | 4.0/0 | 33 | 240 |
18 | Philips Achieva 3.0 T scanner | 8 | 2000 | 35 | 90 | 5.0/1.0 | 24 | 200 |
19 | GE Signa 3 T | 8 | 2000 | 22.5 | 30 | 4.0/0.6 | 33 | 240 |
20 | Siemens Tim Trio 3 T | 12 | 2000 | 30 | 90 | 3.0/1.0 | 32 | 242 |
21 | Siemens Tim Trio 3 T | 32 | 2000 | 30 | 90 | 3.5/0.7 | 33 | 240 |
22 | Philips Gyroscan Achieva 3.0 T | 32 | 2000 | 30 | 90 | 4.0 /0 | 36 | 250 |
23 | Philips Achieva 3.0 T TX | 8 | 2000 | 30 | 90 | 4.0/0 | 38 | 240 |
24 | GE Signa 1.5 T | 8 | 2000 | 40 | 90 | 5/1 | 24 | 160 |
25 | Siemens Verio 3 T | 12 | 2000 | 25 | 90 | 4.0/0 | 36 | 240 |
[1] | HIRSCHFELD R M. Differential diagnosis of bipolar disorder and major depressive disorder[J]. J Affect Disorders, 2014, 169(S1): S12-S16. |
[2] | VERHOEVEN J E, RÉVÉSZ D, PICARD M, et al. Depression, telomeres and mitochondrial DNA: between- and within-person associations from a 10-year longitudinal study[J]. Mol Psychiatry, 2018, 23(4): 850-857. |
[3] |
PENNINX B W J H. Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms[J]. Neurosci Biobehav Rev, 2017, 74: 277-286.
doi: S0149-7634(15)30355-9 pmid: 27461915 |
[4] | KÖNIG H, KÖNIG H-H, KONNOPKA A. The excess costs of depression: A systematic review and meta-analysis[J]. Epidemiol Psychiatr Sci, 2019, 29: e30. |
[5] | HAN L K M, DINGA R, HAHN T, et al. Brain aging in major depressive disorder: Results from the enigma major depressive disorder working group[J]. Mol Psychiatry, 2021, 26(9): 5124-5139. |
[6] | LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging: An expanding universe[J]. Cell, 2023, 2: 243-278. |
[7] | BOCKLANDT S, LIN W, SEHL M E, et al. Epigenetic predictor of age[J]. PLoS One, 2023, 6: e14821. |
[8] | ELLIOTT M L, BELSKY D W, KNODT A R, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort[J]. Mol Psychiatry, 2021, 26(8): 3829-3838. |
[9] | BAO H, CAO J, CHEN J, et al. Aging biomarker consortium. Biomarkers of aging[J]. Sci China Life Sci, 2023, 5: 893-1066. |
[10] |
SHAHAB S, MULSANT B H, LEVESQUE M L, et al. Brain structure, cognition, and brain age in schizophrenia, bipolar disorder, and healthy controls[J]. Neuropsychopharmacology, 2019, 44(5): 898-906.
doi: 10.1038/s41386-018-0298-z pmid: 30635616 |
[11] | LUO Y, CHEN W, QIU J, et al. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease[J]. Nat Commun, 2021, 1: 5346. |
[12] | SONE D, BEHESHTI I, MAIKUSA N, et al. Neuroimaging-based brain-age prediction in diverse forms of epilepsy: A signature of psychosis and beyond[J]. Mol Psychiatry, 2021, 26(3): 825-834. |
[13] | HO T C, GUTMAN B, POZZI E, et al. Subcortical shape alterations in major depressive disorder: Findings from the enigma major depressive disorder working group[J]. Hum Brain Mapp, 2022, 43(1): 341-351. |
[14] |
COLE J H, POUDEL R P K, TSAGKRASOULIS D, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker[J]. NeuroImage, 2017, 163: 115-124.
doi: S1053-8119(17)30640-7 pmid: 28765056 |
[15] |
MANARD M, BAHRI M A, SALMON E, et al. Relationship between grey matter integrity and executive abilities in aging[J]. Brain Research, 2016, 1642: 562-580.
doi: S0006-8993(16)30265-7 pmid: 27107940 |
[16] |
HAN S, CHEN Y, ZHENG R, et al. The stage-specifically accelerated brain aging in never-treated first-episode patients with depression[J]. Hum Brain Mapp, 2021, 42(11): 3656-3666.
doi: 10.1002/hbm.25460 pmid: 33932251 |
[17] | BALLESTER P L, SUH J S, NOGOVITSYN N, et al. Accelerated brain aging in major depressive disorder and antidepressant treatment response: A can-bind report[J]. NeuroImage: Clinical, 2021, 32: 102864. |
[18] | BESTEHER B, GASER C, NENADIĆ I. Machine-learning based brain age estimation in major depression showing no evidence of accelerated aging[J]. Psychiatry Res Neuroimaging, 2019, 290: 1-4. |
[19] |
HØGESTØL E A, KAUFMANN T, NYGAARD G O, et al. Cross-sectional and longitudinal MRI brain scans reveal accelerated brain aging in multiple sclerosis[J]. Front Neurol, 2019, 10: 450.
doi: 10.3389/fneur.2019.00450 pmid: 31114541 |
[20] | FRANKE K, GASER C. Ten years of brainage as a neuroimaging biomarker of brain aging: What insights have we gained[J]. Front Neurol, 2019, 10: 789. |
[21] |
AYCHEH H M, SEONG J-K, SHIN J-H, et al. Biological brain age prediction using cortical thickness data: A large scale cohort study[J]. Front Aging Neurosci, 2018, 10: 252.
doi: 10.3389/fnagi.2018.00252 pmid: 30186151 |
[22] |
FRANKE K, ZIEGLER G, KLÖPPEL S, et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters[J]. NeuroImage, 2010, 50(3): 883-892.
doi: 10.1016/j.neuroimage.2010.01.005 pmid: 20070949 |
[23] | COLE J H, RITCHIE S J, BASTIN M E, et al. Brain age predicts mortality[J]. Mol Psychiatry, 2018, 23(5): 1385-1392. |
[24] | TANVEER M, GANAIE M A, BEHESHTI I, et al. Deep learning for brain age estimation: A systematic review[J]. Information Fusion, 2023, 96: 130-143. |
[25] | YANG H, CHEN X, CHEN Z-B, et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder[J]. Mol Psychiatry, 2021, 26(12): 7363-7371. |
[26] | YAN C G, CHEN X, LI L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder[J]. Proc Natl Acad Sci USA, 2019, 116(18): 9078-9093. |
[27] | CAI W Q, WANG Y J. Advances in construction of human brain atlases from magnetic resonance images[J]. Chinese J Magn Reson, 2020, 37(2): 241-253. |
蔡文琴, 王远军. 基于磁共振成像的人脑图谱构建方法研究进展[J]. 波谱学杂志, 2020, 37(2): 241-253.
doi: 10.11938/cjmr20192706 |
|
[28] | BEHESHTI I, GANAIE M A, PALIWAL V, et al. Predicting brain age using machine learning algorithms: A comprehensive evaluation[J]. IEEE J Biomed Health Inform, 2022, 4: 1432-1440. |
[29] | QIU X X, HAN X, WANG Y, et al. The alteration of rich club in brain functional network in internet gaming disorder[J]. Chinese J Magn Reson, 2022, 39(3): 258-266. |
邱先鑫, 韩旭, 汪耀, 等. 网络游戏障碍人群大脑功能网络rich club结构的改变[J]. 波谱学杂志, 2022, 39(3): 258-266.
doi: 10.11938/cjmr20212967 |
|
[30] |
KOUTSOULERIS N, DAVATZIKOS C, BORGWARDT S, et al. Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders[J]. Schizophr Bull, 2014, 40(5): 1140-1153.
doi: 10.1093/schbul/sbt142 pmid: 24126515 |
[31] | HAN L K M, DINGA R, HAHN T, et al. Brain aging in major depressive disorder: Results from the enigma major depressive disorder working group[J]. Mol Psychiatry, 2021, 26: 5124-5139. |
[32] |
DUNLOP K, VICTORIA L W, DOWNAR J, et al. Accelerated brain aging predicts impulsivity and symptom severity in depression[J]. Neuropsychopharmacology, 2021, 46(5): 911-919.
doi: 10.1038/s41386-021-00967-x pmid: 33495545 |
[33] |
AI A L, NICDAO E G, APPEL H B, et al. Ethnic identity and major depression in asian American subgroups nationwide: Differential findings in relation to subcultural contexts[J]. J Clin Psychol, 2015, 71(12): 1225-1244.
doi: 10.1002/jclp.22214 pmid: 26335455 |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[3] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[4] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[5] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[6] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[7] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | HE Fengcheng, LI Mingdao, LV Xinglong, YAO Shouquan, JIANG Yu. Software Design of the Handheld NMR Spectrometer Console [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | . Structural Identification and Complete NMR Spectral Assignments of 4-Isopropoxy-1-(trifluoroacetyl)naphthalene [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
[12] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[13] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
[14] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[15] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||