波谱学杂志 ›› 2025, Vol. 42 ›› Issue (3): 231-248.doi: 10.11938/cjmr20253149cstr: 32225.14.cjmr20253149
隋美菊1,2, 张磊1,2, 王瑞芳1,2, 骆盈盈1, 李莎1, 丘茂松1, 徐秋怡1,2, 陈代钦1,2, 陈世桢1,2,3,*(), 周欣1,2,3
收稿日期:
2025-03-14
出版日期:
2025-09-05
在线发表日期:
2025-05-06
通讯作者:
* Tel: 027-87198631, E-mail: chenshizhen@apm.ac.cn.基金资助:
SUI Meiju1,2, ZHANG Lei1,2, WANG Ruifang1,2, LUO Yingying1, LI Sha1, QIU Maosong1, XU Qiuyi1,2, CHEN Daiqin1,2, CHEN Shizhen1,2,3,*(), ZHOU Xin1,2,3
Received:
2025-03-14
Published:
2025-09-05
Online:
2025-05-06
Contact:
* Tel: 027-87198631, E-mail: chenshizhen@apm.ac.cn.摘要:
免疫抑制性肿瘤微环境(ITME)对抗肿瘤免疫治疗构成了重大障碍.为应对这一挑战,本研究基于Mn2+和内源性血红素制备了一种新型纳米酶,其具有多重类酶催化活性,可有效逆转ITME并激活抗肿瘤免疫应答,从而协同增强免疫检查点抑制剂(Immune checkpoint inhibitor,ICI)αPD-L1对肿瘤生长和转移的抑制作用.同时,该纳米酶兼具磁共振成像功能,可实现对肿瘤及纳米酶分布的可视化追踪.
中图分类号:
隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248.
SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy[J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248.
表1
实验试剂与材料
试剂/材料名称 | 生产厂商 | 规格 | ||
---|---|---|---|---|
氢氧化钠 | 中国医药集团有限公司 | 500 g | ||
浓盐酸 | 中国医药集团有限公司 | 500 mL | ||
四水合氯化锰 | 上海阿拉丁生化科技股份有限公司 | 500 g | ||
血红素 | 上海迈瑞尔生化科技有限公司 | 25 g | ||
谷胱甘肽 | 上海麦克林生化科技有限公司 | 25 g | ||
十二水合磷酸氢二钠 | 中国医药集团有限公司 | 500 g | ||
二水合磷酸二氢钠 | 中国医药集团有限公司 | 500 g | ||
5,5'-二硫代双(2-硝基苯甲酸)(DTNB) | 上海毕得医药科技有限公司 | 10 g | ||
3,3',5,5'-四甲基联苯胺(TMB) | 西格玛奥德里奇贸易有限公司 | 250 mg | ||
5,5-二甲基-1-吡咯啉-N-氧化物(DMPO) | 西格玛奥德里奇贸易有限公司 | 100 mg | ||
吲哚菁绿(ICG) | 上海麦克林生化科技股份有限公司 | 100 mg | ||
4',6-二脒基-2-苯基吲哚(DAPI)染色液 | 上海碧云天生物技术股份有限公司 | 50 mL | ||
2,7-二氯荧光素二乙酸酯(DCFH-DA) | 北京索莱宝科技有限公司 | 25 mg | ||
无菌PBS | HyClone | 500 mL | ||
胎牛血清 | 长沙赛尔博克斯生物科技有限公司 | 50 mL | ||
RPMI 1640基础培养基 | Gibco Life Sciences公司 | 500 mL | ||
DMEM基础培养基 | Gibco Life Sciences公司 | 500 mL | ||
青霉素-链霉素溶液 | Gibco Life Sciences公司 | 100 mL | ||
胰蛋白酶 | Gibco Life Sciences公司 | 100 mL | ||
抗体:CD80、CD86 | 赛默飞世尔科技有限公司 | 100 μg | ||
小鼠αPD-L1抗体 | BioXcell | 5 mg | ||
IFN-β ELISA检测试剂盒 | 武汉贝茵莱生物科技有限公司 | 96 T | ||
TNF-α ELISA检测试剂盒 | 武汉贝茵莱生物科技有限公司 | 96 T | ||
4T1、BEAS-2B细胞 | 中国科学院细胞库 | 1瓶 | ||
Balb/c小鼠 | 湖北贝恩特生物科技有限公司 | 6周龄雌鼠 |
表2
实验仪器
仪器名称 | 生产厂商 | 型号 |
---|---|---|
pH计 | METTLER TOLEDO | FE20 |
磁力加热搅拌器 | IKA | HS 7 |
高速离心机 | Beckman Coulter | Advanti J-25 |
动态光散射仪 | Malvern | ZETASIZER Nano-ZS90 |
透射电子显微镜 | JEOL | JEM-2100 |
扫描电子显微镜 | Carl Zeiss AG | Zeiss SIGMA |
紫外-可见吸收光谱仪 | Thermo Fisher Scientific | Evolution 220 |
傅里叶变换红外吸光谱仪 | Thermo Fisher Scientific | Nicolet iS10 |
X射线光电子能谱仪 | Thermo Fisher Scientific | ESCA Lab 250Xi |
电子顺磁共振波谱仪 | Bruker | Elexsys E580-10/12 |
808 nm激光器 | 北京镭志威 | LWIRL808 |
红外热成像仪 | 武汉红视热像科技 | HS160 |
溶氧仪 | 上海雷磁 | JPB-607A |
电感耦合等离子体质谱仪 | 德国耶拿分析仪器有限公司 | PQ-MS |
细胞培养箱 | Thermo Fisher Scientific | HERACELL 150i |
细胞计数仪 | 瑞沃德 | C100-SE/C100 |
无菌操作台 | Thermo Fisher Scientific | MCS ADVANTAGE |
共聚焦激光扫描显微镜 | Nikon | A1R/A1 |
流式细胞仪 | Beckman Coulter | CytoFLEX |
小动物麻醉机 | 瑞沃德 | R450 |
小动物光声成像仪 | iThera Medical GmbH | MOST inVision 256-TF |
小动物活体荧光成像仪 | Perkin Elmer | IVIS spectrum imaging system |
7T磁共振成像仪 | Bruker | BioSpec 70/20 USR |
图2
MH NPs的类酶催化性能. (a) MH NPs催化过程示意图;(b) GSH与不同浓度MH NPs(12.5、25、50、100和200 μg·mL-1)反应后DTNB溶液的紫外-可见吸收光谱和照片;(c) H2O2与不同浓度MH NPs(0、10 、20 、30 、40和50 μg·mL-1)反应O2随时间的生成情况;(d) H2O2分别与MH NPs(90 μL, 25 μg·mL-1)、Fe2+和H2O反应的电子顺磁共振谱图;(e)不同反应体系[TMB、TMB + H2O2和TMB + H2O2 + MH NPs(10 μL, 0.1 mg·mL-1)]的紫外-可见吸收光谱;(f)反应体系[TMB + H2O2 + MH NPs(10 μL, 0.1 mg·mL-1)]在不同时间的紫外-可见吸收光谱
图3
MH NPs的光热和光声性能. (a)近红外激光(808 nm激光,500 mW·cm-2)照射下MH NPs溶液(500 μg·mL-1)和H2O的升温曲线和红外热像图;(b) 808 nm激光(500 mW·cm-2)照射下不同浓度MH NPs溶液的温度变化曲线;(c)不同功率密度808 nm激光照射下MH NPs溶液(500 μg·mL-1)的温度变化曲线;(d) MH NPs光热转换效率的计算;(e) 808 nm激光(500 mW·cm-2)照射循环下MH NPs溶液的温度变化曲线;(f)光声(PA)信号强度与MH NPs溶液浓度的相关性以及不同浓度MH NPs溶液的光声图像
图5
MH NPs介导光热作用增强的抗肿瘤催化治疗的体外评价. (a)不同处理后4T1细胞内ROS水平的共聚焦荧光图像(比例尺:100 μm);(b)不同处理后4T1细胞内ROS水平的半定量分析;(c)不同处理后4T1细胞内LPO水平的共聚焦荧光图像(比例尺:100 μm);(d)不同处理后4T1细胞内LPO水平的半定量分析;(e)不同处理后4T1细胞中STING通路相关蛋白表达的Western blot结果;(f)不同处理后4T1细胞中STING信号通路相关蛋白表达的半定量分析;(g)利用transwell系统探究不同处理对4T1细胞诱导的树突状细胞熟化情况示意图;(h)细胞上清液中IFN-β的表达水平;(i)细胞上清液中TNF-α的表达水平;(j)树突状细胞熟化水平的流式分析结果
图6
MH NPs的活体生物分布和磁共振、光声成像. (a)静脉注射MH@ICG NPs不同时间点4T1荷瘤小鼠的活体荧光图像;(b)静脉注射MH@ICG NPs后不同时间点4T1荷瘤小鼠肿瘤部位的荧光变化曲线;(c)MH@ICG NPs静脉注射72 h后4T1荷瘤小鼠主要脏器的荧光图像;(d)静脉注射72 h后4T1荷瘤小鼠主要脏器中MH@ICG NPs的半定量分析;(e)静脉注射MH NPs后不同时间点4T1荷瘤小鼠的T2 MRI图像;(f)静脉注射MH NPs后不同时间点4T1荷瘤小鼠的光声图像;(g)静脉注射MH NPs后不同时间点4T1荷瘤小鼠肿瘤部位T2 MRI信号变化曲线;(h)静脉注射MH NPs后不同时间点4T1荷瘤小鼠肿瘤部位光声信号变化曲线
[1] | ANSELL S M, LESOKHIN A M, BORRELLO I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J]. N Engl J Med, 2014, 372(4): 311-319. |
[2] | HODI F S, O'DAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723. |
[3] | MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age[J]. Nature, 2011, 480(7378): 480-489. |
[4] |
VANNEMAN M, DRANOFF G. Combining immunotherapy and targeted therapies in cancer treatment[J]. Nat Rev Cancer, 2012, 12(4): 237-251.
doi: 10.1038/nrc3237 pmid: 22437869 |
[5] | ALI S, KJEKEN R, NIEDERLAENDER C, et al. The European medicines agency review of kymriah (tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma[J]. Oncologist, 2020, 25(2): e321-e327. |
[6] | SHI Y, LAMMERS T. Combining nanomedicine and immunotherapy[J]. Acc Chem Res, 2019, 52(6): 1543-1554. |
[7] |
MUSETTI S, HUANG L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy[J]. ACS Nano, 2018, 12(12): 11740-11755.
doi: 10.1021/acsnano.8b05893 pmid: 30508378 |
[8] | LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373(1): 23-34. |
[9] |
FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chem Rev, 2017, 117(22): 13566-13638.
doi: 10.1021/acs.chemrev.7b00258 pmid: 29048884 |
[10] | CHENG L, JIANG D, KAMKAEW A, et al. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy[J]. Adv Funct Mater, 2017, 27(34): 1702928. |
[11] | LI B, XIE X, CHEN Z, et al. Tumor inhibition achieved by targeting and regulating multiple key elements in EGFR signaling pathway using a self-assembled nanoprodrug[J]. Adv Funct Mater, 2018, 28(22): 1800692. |
[12] | LI Y, XU N, ZHU W, et al. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis[J]. ACS Appl Mater Interfaces, 2018, 10(27): 22974-22984. |
[13] |
GONG Y, WANG P, CAO R, et al. Exudate absorbing and antimicrobial hydrogel integrated with multifunctional curcumin-loaded magnesium polyphenol network for facilitating burn wound healing[J]. ACS Nano, 2023, 17(22): 22355-22370.
doi: 10.1021/acsnano.3c04556 pmid: 37930078 |
[14] | REN Z, SUN S, SUN R, et al. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy[J]. Adv Mater, 2020, 32(6): e1906024. |
[15] |
YANG W, DENG C, SHI X, et al. Structural and molecular fusion MRI nanoprobe for differential diagnosis of malignant tumors and follow-up chemodynamic therapy[J]. ACS Nano, 2023, 17(4): 4009-4022.
doi: 10.1021/acsnano.2c12874 pmid: 36757738 |
[16] |
ZHANG Z, LI B, XIE L, et al. Metal-phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy[J]. ACS Nano, 2021, 15(10): 16934-16945.
doi: 10.1021/acsnano.1c08026 pmid: 34661387 |
[17] | XIONG Y X, WANG W, DENG Q Y, et al. Mild photothermal therapy boosts nanomedicine antitumor efficacy by disrupting DNA mechanics damage repair pathways and modulating tumor[J]. Nano Today, 2023, 49: 101767. |
[18] | ZHANG Y, TANG S Q, FENG X Y, et al. Tumor-targeting gene-photothermal synergistic therapies based on multifunctional polydopamine nanoparticles[J]. Chem Eng J, 2023, 457: 141315. |
[19] |
ZHOU M X, WANG J X, PAN J X, et al. Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy[J]. Nat Commun, 2023, 14(1): 3593.
doi: 10.1038/s41467-023-39035-x pmid: 37328484 |
[20] | WANG B J, WANG T, JIANG T Z, et al. Circulating immunotherapy strategy based on pyroptosis and STING pathway: Mn-loaded paclitaxel prodrug nanoplatform against tumor progression and metastasis[J]. Biomaterials, 2024, 306: 122472. |
[21] | CHEN C, SHEN X T, SHI S L, et al. Biomimetic Fe3+ metal-phenolic networks enable DNAzyme and Cas9 RNP delivery for synergistic tumor ferroptosis-immunotherapy[J]. Chem Eng J, 2024, 499: 156050. |
[22] | INTAKHAD J, VACHIRAARUNWONG A, WONGPOOMCHAI R, et al. Ferric-tannic nanoparticles inhibit early-stage hepatocarcinogenesis by activating tumor immune responses in rats[J]. Adv Ther, 2024, 7(12): 2400348. |
[23] | CHEN H Q, LIU L L, MA A Q, et al. Noninvasively immunogenic sonodynamic therapy with manganese protoporphyrin liposomes against triple-negative breast cancer[J]. Biomaterials, 2021, 269: 120639. |
[24] | LI Z F, WANG C M, DAI C, et al. Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy[J]. Biomaterials, 2022, 287: 121668. |
[25] | LIU J J, LIU S W, WU Y C, et al. Curcumin doped zeolitic imidazolate framework nanoplatforms as multifunctional nanocarriers for tumor chemo/immunotherapy[J]. Biomater Sci, 2022, 10(9): 2384-2393. |
[26] | XIA Y X, JI X R, LI Q R. Research progress on application of immune checkpoint inhibitors combined with curcumin in tumor treatment[J]. Journal of Medical Forum, 2025, 46(7): 780-784. |
夏雨轩, 纪翛然, 李倩如. 免疫检查点抑制剂联合姜黄素在肿瘤治疗中的应用研究进展[J]. 医药论坛杂志, 2025, 46(7): 780-784. | |
[27] | YAN H, HUANG S. Anti-tumor effect of curcumin on human colorectal cancer SW-620 cells[J]. Journal of Tianjin Medical University, 2024, 30(6): 479-484. |
阎晗, 黄珊. 姜黄素对人结直肠癌SW-620细胞抗肿瘤效果的研究[J]. 天津医科大学学报, 2024, 30(6): 479-484. | |
[28] | CHEN L, LI Y Y, GAO F Y, et al. Study on the effect of dihydroartemisinin on ferroptosis in ovarian cancer cells by regulating SLC7A11/GPX4 signaling pathway[J]. Journal of Chinese Medicinal Materials, 2024, (12): 3103-3107. |
陈露, 李由由, 杲飞莹, 等. 双氢青蒿素通过调节SLC7A11/GPX4信号通路诱导卵巢癌细胞铁死亡[J]. 中药材, 2024, (12): 3103-3107. | |
[29] | XU J R, JIA F J, CHEN J L, et al. Research of dihydroartemisinin on anti-colorectal cancer by regulating MAPK/PI3K/Akt signaling pathway[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2024, 38(2): 83-92. |
徐嘉若, 贾丰菁, 陈佳靓, 等. 双氢青蒿素通过调控MAPK/PI3K/Akt信号通路抗结直肠癌作用研究[J]. 上海中医药大学学报, 2024, 38(2): 83-92. | |
[30] | HU X X, ZHAO Y, WANG Y, et al. Study on the nano-drug delivery system and anti-tumor mechanism of artemisinin and its derivatives[J]. Chemical Reagents, 2024, 46(7): 11-19. |
胡晓娴, 赵雨, 王赟, 等. 青蒿素及其衍生物纳米药物递送系统和抗肿瘤机制研究[J]. 化学试剂, 2024, 46(7): 11-19. | |
[31] |
GUO Y J, DENG L, LI J, et al. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism[J]. ACS Nano, 2011, 5(2): 1282-1290.
doi: 10.1021/nn1029586 pmid: 21218851 |
[32] | GOLUB E, FREEMAN R, WILLNER I. A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme[J]. Angew Chem Int Ed Engl, 2011, 50(49): 11710-11714. |
[33] |
YANG Y, ZHU W J, FENG L Z, et al. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy[J]. Nano Lett, 2018, 18(11): 6867-6875.
doi: 10.1021/acs.nanolett.8b02732 pmid: 30303384 |
[34] | LI K, XU K, HE Y, et al. Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor[J]. Small, 2021, 17(40): e2102046. |
[35] |
LI X C, ZHANG X, SONG L, et al. Nanozyme as tumor energy homeostasis disruptor to augment cascade catalytic therapy[J]. ACS Nano, 2024, 18(51): 34656-34670.
doi: 10.1021/acsnano.4c09982 pmid: 39661982 |
[36] | CHAO F R, CAO C L, XU Y, et al. Sprayable hydrogel for pH-responsive nanozyme-derived bacteria-infected wound healing[J]. ACS Appl Mater Interfaces, 2025, 17(4): 5921-5932. |
[37] |
ELIA I, HAIGIS M C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism[J]. Nat Metab, 2021, 3(1): 21-32.
doi: 10.1038/s42255-020-00317-z pmid: 33398194 |
[38] | JIN M Z, JIN W L. The updated landscape of tumor microenvironment and drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 166. |
[39] | FAN Y, CHEN L, ZHENG Y, et al. Nanoparticle-based activatable MRI probes for disease imaging and monitoring[J]. Chem Biomed Imaging, 2023, 1(3): 192-204. |
[40] |
WU F, DU Y Q, YANG J N, et al. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death[J]. ACS Nano, 2022, 16(3): 3647-3663.
doi: 10.1021/acsnano.1c06777 pmid: 35266697 |
[41] | YANG B C, DAI Z C, ZHANG G R, et al. Ultrasmall ternary FePtMn nanocrystals with acidity-triggered dual-Ions release and hypoxia relief for multimodal synergistic chemodynamic/photodynamic/photothermal cancer therapy[J]. Adv Healthc Mater, 2020, 9(21): e1901634. |
[42] |
ZHAO Z Y, DONG S M, LIU Y, et al. Tumor microenvironment-activable manganese-boosted catalytic immunotherapy combined with PD-1 checkpoint blockade[J]. ACS Nano, 2022, 16(12): 20400-20418.
doi: 10.1021/acsnano.2c06646 pmid: 36441901 |
[43] | NEMETH T, PALLIER A, ÇELIK Ç, et al. Water-soluble Mn(III)-porphyrins with high relaxivity and photosensitization[J]. Chem Biomed Imaging, 2025, 3(1): 5-14. |
[44] | ZENG Q B, GUO Q N, LUO Q, et al. Manganese-based contrast agents for MRI[J]. Chin J Magn Reson Imaging, 2014, 5(4): 315-320. |
曾庆斌, 郭茜旎, 罗晴, 等. 锰对比剂在MRI中的应用[J]. 磁共振成像, 2014, 5 (4): 315-320. | |
[45] | ZHANG H X, YANG S P. Research progress of manganese(II)-based contrast agents in magnetic resonance imaging[J]. Journal of Shanghai Normal University (Natural Sciences), 2025, 54(1): 53-61. |
张何仙, 杨仕平. 锰(II)基造影剂在磁共振成像中的研究进展[J]. 上海师范大学学报(自然科学版), 2025, 54(1): 53-61. | |
[46] |
CHEN L, DING C P, CHAI K J, et al. Nanohole-array induced metallic molybdenum selenide nanozyme for photoenhanced tumor-specific therapy[J]. ACS Nano, 2023, 17(18): 18148-18163.
doi: 10.1021/acsnano.3c05000 pmid: 37713431 |
[47] | ZHU Y L, ZHAO R X, FENG L, et al. Dual nanozyme-driven PtSn bimetallic nanoclusters for metal-enhanced tumor photothermal and catalytic therapy[J]. ACS Nano, 2023, 17(7): 6833-6848. |
[48] | PENG L, ZHAO A G, LI R K, et al. Self-propelled in situ polymerized nanoparticles activating the STING pathway for enhanced bladder cancer immunotherapy[J]. Adv Sci, 2025, 12: 2502750. |
[1] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
[2] | 李鹏, 纪雨萍, 胡悦. 基于流形结构正则化的快速高质量磁共振指纹定量成像[J]. 波谱学杂志, 2025, 42(3): 249-264. |
[3] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
[4] | 孟靖欣, 王远军. 基于扩散磁共振的大脑浅表白质纤维束研究进展[J]. 波谱学杂志, 2025, 42(2): 205-220. |
[5] | 孙灏芸, 王丽嘉. 融合注意力机制和空洞卷积的3D ELD_MobileNetV2在肝结节分类中的应用[J]. 波谱学杂志, 2025, 42(2): 130-142. |
[6] | 曹飞, 徐芊芊, 陈浩, 祖洁, 李晓文, 田锦, 鲍磊. 基于交叉自监督和DWI的NIID智能诊断方法[J]. 波谱学杂志, 2025, 42(2): 154-163. |
[7] | 陈群, 杨子剑, 程心怡, 郏思奕, 杜小霞, 王梦星. 磁共振成像技术在儿童运动干预研究中的应用[J]. 波谱学杂志, 2025, 42(2): 195-204. |
[8] | 杨佳铖, 王远军. 改进约束球面反卷积模型的脑灰质微结构成像[J]. 波谱学杂志, 2025, 42(1): 67-79. |
[9] | 宁欣宙, 黄臻, 陈西曲, 刘鑫杰, 陈罡, 张志, 鲍庆嘉, 刘朝阳. 用于超快时空编码MRI的Transformer超分辨率重建算法研究[J]. 波谱学杂志, 2024, 41(4): 454-468. |
[10] | 逄奇凡, 王志超, 武玉朋, 李建奇. K空间填充策略对基于FLASH序列的APT图像脂肪伪影的影响[J]. 波谱学杂志, 2024, 41(4): 443-453. |
[11] | 黄敏, 朱俊琳, 考宇辰, 周到, 唐奇伶. 基于物理模型的ISTAVS-Net多线圈MRI图像重建[J]. 波谱学杂志, 2024, 41(4): 418-429. |
[12] | 易鹏, 曹丽, 黄臻, 程鑫, 王佳鑫, 陈黎, 陈方, 鲍庆嘉, 张志, 刘朝阳. 用于小口径5 T磁共振成像系统的梯度线圈和1H/13C双共振射频线圈研制[J]. 波谱学杂志, 2024, 41(3): 245-256. |
[13] | 陈琪, 李海东, 方媛, 沈路阳, 刘无己, 罗明, 李业成, 张鸣, 赵修超, 石磊, 周倩, 韩叶清, 周欣. 129Xe通气功能MRI与肺部病灶类型关联研究[J]. 波谱学杂志, 2024, 41(3): 276-285. |
[14] | 徐真顺, 袁小涵, 黄子珩, 邵成伟, 武杰, 边云. 基于深度学习的胰腺黏液性和浆液性囊性肿瘤的多源特征分类模型[J]. 波谱学杂志, 2024, 41(1): 19-29. |
[15] | 刘颖, 林羚, 袁斌华, 章浩伟. MRI梯度波形发生器研究进展[J]. 波谱学杂志, 2024, 41(1): 99-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||