波谱学杂志 ›› 2025, Vol. 42 ›› Issue (4): 378-389.doi: 10.11938/cjmr20253155cstr: 32225.14.cjmr20253155

• 研究论文 • 上一篇    下一篇

胰腺自动分割与区域定量及糖尿病评估研究

李英豪1,2, 王丽辉3, 王苏成1, 朱中旗1, 黄长栋1, 李仁峰3, 曹开明3, 胡海洋3, 贾一鸣3, 梁松涛3, 杨光1,2,§(), 路青3,#(), 汪红志1,2,*()   

  1. 1.上海市磁共振重点实验室华东师范大学物理与电子科学学院上海 200062
    2.华东师范大学医学磁共振与分子影像技术研究院上海 200062
    3.同济大学附属上海市东方医院放射科上海 200123
  • 收稿日期:2025-03-27 出版日期:2025-12-05 在线发表日期:2025-04-23
  • 通讯作者: § Tel: 18521510757, E-mail: gyang@phy.ecnu.edu.cn; # Tel: 021-38804518, E-mail: Drluqingsjtu@163.com; * Tel: 13916346546, E-mail: hzwang@phy.ecnu.edu.cn.
  • 基金资助:
    上海市卫生健康委员会卫生行业临床研究专项(202340212);上海市东方医院引进人才项目(DFRC2023015)

Study on Pancreas Automatic Segmentation, Regional Quantification, and Diabetes Assessment

LI Yinghao1,2, WANG Lihui3, WANG Sucheng1, ZHU Zhongqi1, HUANG Changdong1, LI Renfeng3, CAO Kaiming3, HU Haiyang3, JIA Yiming3, LIANG Songtao3, YANG Guang1,2,§(), LU Qing3,#(), WANG Hongzhi1,2,*()   

  1. 1. Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
    2. Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai 200062, China
    3. Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai 200123, China

摘要:

胰腺健康与糖尿病等疾病密切相关,准确检测胰腺脂肪含量对疾病的早期诊断和干预具有重要意义.本文提出了一种基于深度学习的胰腺自动分割与脂肪定量方法.首先,使用nnU-Net训练分割模型,实现对m-Dixon序列中胰腺整体的高精度分割,测试集DSC系数(Dice Similarity Coefficient,DSC)达0.92.随后,提出一种自动分区与脂肪定量评估方法,实现胰腺头、体、尾的精准划分,并定量分析其体积及脂肪含量.基于256例受试者的研究结果表明,胰腺尾部脂肪含量与2型糖尿病显著相关(p < 0.05).进一步利用随机森林分类模型进行糖尿病风险预测,其中基于尾部脂肪含量的分类曲线下面积(Area Under the Curve,AUC)为0.68,而结合多区域脂肪信息构建的组合脂肪含量的分类AUC达0.73.研究结果表明,该方法可为糖尿病的早期诊断提供有效的技术支持.

关键词: 磁共振成像, 2型糖尿病预测, 深度学习, 胰腺, nnU-Net

Abstract:

Pancreatic health is closely linked to diabetes, making accurate fat quantification crucial for early diagnosis. This study proposes a deep learning-based method for automatic pancreatic segmentation and fat quantification. The nnU-Net model achieves high-precision segmentation on m-Dixon Imaging, with a Dice similarity coefficient (DSC) of 0.92. A novel sub-region partitioning and quantification method enables precise delineation of the pancreatic head, body, and tail. Analysis of 256 subjects (healthy, prediabetic, diabetic) reveals a significant association between pancreatic tail fat and type 2 diabetes (p < 0.05). Using random forest classifiers, diabetes risk was effectively predicted based on tail fat content and a composite fat index, yielding an area under the curve (AUC) of 0.68 and 0.73, respectively. This method offers a promising tool for the early diagnosis of diabetes.

Key words: magnetic resonance imaging (MRI), type 2 diabetes mellitus (T2DM) prediction, deep learning, pancreas, nnU-Net

中图分类号: