Chinese Journal of Magnetic Resonance ›› 2016, Vol. 33 ›› Issue (3): 361-367.doi: 10.11938/cjmr20160301
Previous Articles Next Articles
YAN Xiao-jing, HU Bing-wen
Received:
2015-03-11
Revised:
2016-07-15
Published:
2016-09-05
Online:
2016-09-05
Supported by:
Large Instruments Open Foundation of East China Normal University, National Natural Science Foundation of China (21373086), National Science Fund of China for Excellent Young Scholars (21522303), Basic Research Project of Shanghai Science and Technology Committee (14JC1491000).
CLC Number:
YAN Xiao-jing, HU Bing-wen. Probing 15N-15N Correlations in g-C3N4 Samples with Solid-State NMR SHA+ Pulse Sequence[J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 361-367.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Castellani F, van Rossum B, Diehl A, et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy[J]. Nature, 2002, 420(6 911): 98-102.[2] Lange A, Becker S, Seidel K, et al. A concept for rapid protein-structure determination by solid-state NMR spectroscopy[J]. Angew Chem Int Ed Engl, 2005, 44(14): 2 089-2 092.[3] Wasmer C, Lange A, van Melckebeke H, et al. Amyloid fibrils of the HET-s (218-289) Prion form a b solenoid with a triangular hydrophobic core[J]. Science, 2008, 319(5 869): 1 523-1 526.[4] Lange A, Giller K, Hornig S, et al. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR[J]. Nature, 2006, 440(7 086): 959-962.[5] Renault M, Cukkemane A, Baldus M. Solid-state NMR spectroscopy on complex biomolecules[J]. Angew Chem Int Ed Engl, 2010, 49(45): 8 346-8 357.[6] Hong M, Zhang Y, Hu F H. Membrane protein structure and dynamics from NMR spectroscopy[J]. Annu Rev Phys Chem, 2012, 63: 1-24.[7] Tycko R. Solid-state NMR studies of amyloid fibril structure[J]. Annu Rep Phys Chem, 2011, 62: 279-299.[8] Takegoshi K, Nakamura S, Terao T. 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR[J]. Chem Phys Lett, 2001, 344(5): 631-637.[9] Takegoshi K, Nakamura S, Terao T. 13C-1H dipolar-driven 13C-13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids[J]. J Chem Phys, 2003, 118(5): 2 325-2 341.[10] Weingarth M, Masuda Y, Takegoshi K, et al. Sensitive 13C-13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields[J]. J Biomol NMR, 2011, 50(2): 129-136.[11] Weingarth M, Bodenhausen G, Tekely P. Broadband carbon-13 correlation spectra of micro crystalline proteins in very high-magnetic fields[J]. J Am Chem Soc, 2009, 131(39): 13 937-13 939.[12] Weingarth M, Demco D E, Bodenhausen G, et al. Improved magnetization transfer in solid-state NMR with fast magic angle spinning[J]. Chem Phys Lett, 2009, 469(4, 5, 6): 342-348.[13] Hu B W, Lafon O, Trébosc J, et al. Broad-band homo-nuclear correlations assisted by 1H irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS frequencies[J]. J Magn Reson, 2011, 212(2): 320-329.[14] Hu B W, Trébosc J, Lafon O, et al. Very-long-distance correlations in proteins revealed by solid-state NMR spectroscopy[J]. Chem Phys Chem, 2012, 13(16): 3 585-3 588.[15] Scholz I, van Beek J D, Ernst M. Operator-based Floquet theory in solid-state NMR[J]. Solid State Nucl Magn Reson, 2010, 37(3, 4): 39-59.[16] Leskes M, Akbey Ü, Oschkinat H, et al. Radio frequency assisted homo-nuclear recoupling, a Floquet description of homo-nuclear recoupling via surrounding hetero-nuclei in fully protonated to fully deuterated systems[J]. J Magn Reson, 2011, 209(2): 207-219.[17] Jurgens B, Irran E, Senker J, et al. Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to Graphitic Carbon Nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies[J]. J Am Chem Soc, 2003, 125(34): 10 288-10 300.[18] Bak M, Rasmussen J T, Nielsen N C. SIMPSON: A general simulation program for solid-state NMR spectroscopy[J]. J Magn Reson, 2000, 147(2): 296-330.[19] Bak M, Nielsen N C. REPULSION: A novel approach to efficient powder averaging in solid-state NMR[J]. J Magn Reson, 1997, 125(1): 132-139.[20] Fung B M, Khitrin A K, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids[J]. J Magn Reson, 2000, 142(1): 97-101.[21] Lotsch B V, Dçblinger M, Sehnert J, et al. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations; structural characterization of a carbon nitride polymer[J]. Chem Eur J, 2007, 13(17): 4 969-4 980.[22] Vosegaard T. Challenges in numerical simulations of solid-state NMR experiments: Spin exchange pulse sequences[J]. Solid State Nucl Magn Reson, 2010, 38(4): 77-83. |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[3] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[4] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[5] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[6] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[7] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | HE Fengcheng, LI Mingdao, LV Xinglong, YAO Shouquan, JIANG Yu. Software Design of the Handheld NMR Spectrometer Console [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | . Structural Identification and Complete NMR Spectral Assignments of 4-Isopropoxy-1-(trifluoroacetyl)naphthalene [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
[12] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[13] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
[14] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[15] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||