Chinese Journal of Magnetic Resonance ›› 2016, Vol. 33 ›› Issue (3): 458-467.doi: 10.11938/cjmr20160311
Special Issue: 虚拟专刊:低场磁共振技术与应用
Previous Articles Next Articles
ZHAO Xiu-chao1,2, SUN Xian-ping1, YUAN Ya-ping1,2, SHI Lei1, YE Chao-hui1, ZHOU Xin1
Received:
2015-10-22
Revised:
2016-07-10
Published:
2016-09-05
Online:
2016-09-05
CLC Number:
ZHAO Xiu-chao, SUN Xian-ping, YUAN Ya-ping, SHI Lei, YE Chao-hui, ZHOU Xin. Measuring Polarization of Hyperpolarized Xenon-129 Gas with Low-Field NMR[J]. Chinese Journal of Magnetic Resonance, 2016, 33(3): 458-467.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Hatabu H, Alsop D C, Listerud J, et al. T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging[J]. Eur J Radiol, 1999, 29(3): 245-252.[2] Stock K W, Chen Q, Hatabu H, et al. Magnetic resonance T2* measurements of the normal human lung in vivo with ultrashort echo times[J]. Magn Reson Imaging, 1999, 17(7): 997-1 000.[3] Ohno Y, Koyama H, Yoshikawa T, et al. T2* measurements of 3-T MRI with ultrashort TEs: Capabilities of pulmonary function assessment and clinical stage classification in smokers[J]. Am J Roentgenol, 2011, 197(2): W279-W285.[4] Salerno M, Altes T A, Mugler J P, et al. Hyperpolarized noble gas MR imaging of the lung: Potential clinical applications[J]. Eur J Radiol, 2001, 40(1): 33-44.[5] van Beek E J, Wild J M, Kauczor H U, et al. Functional MRI of the lung using hyperpolarized 3-helium gas[J]. J Magn Reson Imaging, 2004, 20(4): 540-554.[6] Möller H E, Chen X J, Saam B, et al. MRI of the lungs using hyperpolarized noble gases[J]. Magn Reson Med, 2002, 47(6): 1 029-1 051.[7] Fain S, Schiebler M L, McCormack D G, et al. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications[J]. J Magn Reson Imaging, 2010, 32(6): 1 398-1 408.[8] Matsuoka S, Patz S, Albert M S, et al. Hyperpolarized gas MR imaging of the lung: Current status as a research tool[J]. J Thorac Imaging, 2009, 24(3): 181-188.[9] Li Hai-dong(李海东), Zhang Zhi-ying(张智颖), Han Ye-qing(韩叶清), et al. Lung MRI using hyperpolarized gases(超极化气体肺部磁共振成像)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(3): 307-320.[10] Ruan Wei-wei(阮伟伟), Zhong Jian-ping(钟俭平), Han Ye-qing(韩叶清), et al. Visualize diffusion map of COPD rat with hyperpolarized Xenon MRI(超极化Xenon对慢阻肺的可视化加权成像)[J]. Chinese J Magn Reson(波谱学杂志), 2015, 32(2): 261-271.[11] Appelt S, Ben-Amar Baranga A, Erickson C J, et al. Theory of spin-exchange optical pumping of 3He and 129Xe[J]. Phys Rev A, 1998, 58(2): 1 412-1 439.[12] Babcock E, Chann B, Walker T G, et al. Limits to the polarization for spin-exchange optical pumping of 3He[J]. Phys Rev Lett, 2006, 96(8): 083003.[13] Rao M, Robb F, Wild J M. Dedicated receiver array coil for 1H lung imaging with same-breath acquisition of hyperpolarized 3He and 129Xe gas[J]. Magn Reson Med, 2015, 74(1): 291-299.[14] Mayo J R, Hayden M E. Hyperpolarized helium-3 diffusion imaging of the lung[J]. Radiology, 2002, 222(1): 8-11.[15] Yablonskiy D A, Sukstanskii A L, Quirk J D, et al. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: Theoretical models and experimental results[J]. Magn Reson Med, 2014, 71(2): 486-505.[16] Owrangi A M, Wang J X, Wheatley A, et al. Quantitative 1H and hyperpolarized 3He magnetic resonance imaging: comparison in chronic obstructive pulmonary disease and healthy never-smokers[J]. Eur J Radiol, 2014, 83(1): 64-72.[17] Woodhouse N, Wild J M, Palesy M N J, et al. Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers[J]. J Magn Reson Imaging, 2005, 21(4): 365-369.[18] Friar J L, Gibson B F, Payne G L, et al. Neutron polarization in polarized 3He targets[J]. Phys Rev C. 1990, 42(2): 2 310-2 314.[19] Stoner R E, Rosneberry M A, Wright J T, et al. Demonstration of a two species noble gas master[J]. Phys Rev Lett, 1996, 77(19): 3 971-3 974.[20] Goodson B M. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms[J]. J Magn Reson, 2002, 155(2): 157-216.[21] Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei[J]. Rev Mod Phys, 1997, 69(2): 629-642.[22] Happer W, Miron E, Schaefer S, et al. Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms[J]. Phys Rev A, 1984, 29(6): 3 092-3 110.[23] Zook A L, Adhyaru B B, Bowers C R, et al. High capacity production of >65% spin polarized xenon-129 for NMR spectroscopy and imaging[J]. J Magn Reson, 2002, 159(2): 175-182.[24] Whiting N, Nikolaou P, Eschmann N A, et al. Using frequency-narrowed, tunable laser diode arrays with integrated volume holographic gratings for spin-exchange optical pumping at high resonant fluxed and xenon densities[J]. Appl Phys B, 2012, 106(4): 775-788.[25] Couture A H, Clegg T B, Driehuys B. Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization[J]. J Appl Phys, 2004, 104(9): 094812.[26] Romalis M V, Miron E, Cates G D. Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings[J]. Phys Rev A, 1997, 56(6): 4 569-4 578. |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[3] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[4] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[5] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[6] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[7] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | HE Fengcheng, LI Mingdao, LV Xinglong, YAO Shouquan, JIANG Yu. Software Design of the Handheld NMR Spectrometer Console [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | . Structural Identification and Complete NMR Spectral Assignments of 4-Isopropoxy-1-(trifluoroacetyl)naphthalene [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[12] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
[13] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[14] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
[15] | CHEN Jingcong, RAN Fengwei, ZHANG Haowei, LIU Ying. Optimization Methodology for Meningioma and Acoustic Neuroma Detection Model Based on DCGAN [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 117-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||