Chinese Journal of Magnetic Resonance ›› 2024, Vol. 41 ›› Issue (3): 276-285.doi: 10.11938/cjmr20243103cstr: 32225.14.cjmr20243103
• Articles • Previous Articles Next Articles
CHEN Qi1,2, LI Haidong1,2, FANG Yuan1, SHEN Luyang1, LIU Wuji1,2, LUO Ming1, LI Yecheng1,2, ZHANG Ming1,2, ZHAO Xiuchao1,2, SHI Lei1,2, ZHOU Qian1, HAN Yeqing1,2, ZHOU Xin1,2,*()
Received:
2024-03-23
Published:
2024-09-05
Online:
2024-04-09
Contact:
*Tel: 027-87198631, E-mail: xinzhou@wipm.ac.cn.
CLC Number:
CHEN Qi, LI Haidong, FANG Yuan, SHEN Luyang, LIU Wuji, LUO Ming, LI Yecheng, ZHANG Ming, ZHAO Xiuchao, SHI Lei, ZHOU Qian, HAN Yeqing, ZHOU Xin. Association of 129Xe Ventilation Functional MRI with Pulmonary Lesion Types[J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 276-285.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Demographics, PFTs, respiratory questionnaire and 129Xe MRI results of volunteers
基本信息 | CT异常(n=123) | CT正常(n=20) |
---|---|---|
年龄 | 57.5 ± 12.7 | 43.3 ± 13.4 |
男性人数 | 79 (64.2%) | 13 (65.0%) |
BMI | 24.8 ± 3.4 | 24.3 ± 3.2 |
PFTs | ||
FEV1%pred | 105.0 ± 14.4 | 107.3 ± 12.8 |
FVC%pred | 107.3 ± 14.1 | 112.5 ± 13.3 |
FEV1/FVC%pred | 94.9 ± 6.0 | 95.2 ± 4.8 |
RV%pred | 86.7 ± 22.8 | 102.6 ± 20.2 |
TLC%pred | 89.9 ± 12.6 | 96.8 ± 8.8 |
RV/TLC%pred | 93.8 ± 18.5 | 104.8 ± 16.3 |
FRC%pred | 100.5 ± 22.1 | 112.7 ± 12.1 |
PEF%pred | 111.7 ± 22.0 | 99.0 ± 17.1 |
呼吸问卷 | ||
SGRQ评分 | 12.0 ± 13.7 | 8.8 ± 10.9 |
129Xe MRI | ||
全局VDP(%) | 4.6 ± 3.0 | 3.2 ± 1.6 |
Table 2
Lung lobe structure-function information
CT(0)-129Xe MRI(0) | CT(0)-129Xe MRI(1) | CT(1)-129Xe MRI(0) | CT(1)-129Xe MRI(1) | |
---|---|---|---|---|
RUL | 54(37.8%) | 16(11.1%) | 15(10.5%) | 58(40.6%) |
RML | 74(51.7%) | 13(9.1%) | 18(12.6%) | 38(26.6%) |
RLL | 43(30.0%) | 7(4.9%) | 32(22.4%) | 61(42.7%) |
LUL | 49(34.3%) | 32(22.3%) | 10(7.0%) | 52(36.4%) |
LLL | 53(37.1%) | 18(12.6%) | 21(14.7%) | 51(35.7%) |
总计 | 273(38.2%) | 86(12.0%) | 96(13.4%) | 260(36.4%) |
[1] | EMAMI K, KADLECEK S J, WOODBURN J M, et al. Improved technique for measurement of regional fractional ventilation by hyperpolarized 3He MRI[J]. Magn Reson Med, 2010, 63(1): 137-150. |
[2] | LOPES A J. Advances in spirometry testing for lung function analysis[J]. Expert Rev Respir Med, 2019, 13(6): 559-569. |
[3] | OGUMA T, HIRAI T, NIIMI A, et al. Limitations of airway dimension measurement on images obtained using multi-detector row computed tomography[J]. PLoS One, 2013, 8(10): e76381. |
[4] |
DE BACKER J W, VOS W G, VINCHURKAR S C, et al. Validation of computational fluid dynamics in CT-based airway models with SPECT/CT[J]. Radiology, 2010, 257(3): 854-862.
doi: 10.1148/radiol.10100322 pmid: 21084417 |
[5] | KERN A L, VOGEL-CLAUSSEN J. Hyperpolarized gas MRI in pulmonology[J]. Br J Radiol, 2018, 91(1084): 20170647. |
[6] | WANG G X, YANG H Y, LI J, et al. Overview and progress of X-nuclei magnetic resonance imaging in biomedical studies[J]. Magn Reson Lett, 2023, 3(4): 327-343. |
[7] | CHEN X M, ZHAO X C, SUN X P, et al. Study on the automatic accumulation-thawing device of hyperpolarized 129Xe[J]. Chinese J Magn Reson, 2022, 39(3): 316-326. |
陈小明, 赵修超, 孙献平, 等. 超极化129Xe自动收集-升华装置研究[J]. 波谱学杂志, 2022, 39(3): 316-326.
doi: 10.11938/cjmr20222998 |
|
[8] | DRIEHUYS B, MARTINEZ-JIMENEZ S, CLEVELAND Z I, et al. Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients[J]. Radiology, 2012, 262(1): 279-289. |
[9] | SHUKLA Y, WHEATLEY A, KIRBY M, et al. Hyperpolarized 129Xe magnetic resonance imaging: tolerability in healthy volunteers and subjects with pulmonary disease[J]. Acad Radiol, 2012, 19(8): 941-951. |
[10] | MCINTOSH M J, KOONER H K, EDDY R L, et al. Asthma control, airway mucus, and 129Xe MRI ventilation after a single benralizumab dose[J]. Chest, 2022, 162(3): 520-533. |
[11] | KOONER H K, MCINTOSH M J, MATHESON A M, et al. Postacute COVID-19 Syndrome: 129Xe MRI Ventilation Defects and Respiratory Outcomes 1 Year Later[J]. Radiology, 2023, 307(2): e222557. |
[12] | LI H D, ZHAO X C, WANG Y J, et al. Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized 129Xe MRI[J]. Sci Adv, 2021, 7(1): eabc8180. |
[13] |
ZHOU Q, RAO Q, LI H D, et al. Evaluation of injuries caused by coronavirus disease 2019 using multi-nuclei magnetic resonance imaging[J]. Magn Reson Lett, 2021, 1(1): 2-10.
doi: 10.1016/j.mrl.2021.100009 pmid: 35673615 |
[14] |
XIE H Y, ZHAO Z, ZHANG W J, et al. Quantitative analysis of lung function and airway remodeling using ventilation/perfusion single photon emission tomography/computed tomography and HRCT in patients with chronic obstructive pulmonary disease and asthma[J]. Ann Nucl Med, 2023, 37(9): 504-516.
doi: 10.1007/s12149-023-01848-7 pmid: 37268867 |
[15] | EIBSCHUTZ L S, RABIEE B, ASADOLLAHI S, et al. FDG-PET/CT of COVID-19 and Other Lung Infections[J]. Semin Nucl Med, 2022, 52(1): 61-70. |
[16] | MATIN T N, RAHMAN N, NICKOL A H, et al. Chronic obstructive pulmonary disease: lobar analysis with hyperpolarized 129Xe MR imaging[J]. Radiology, 2017, 282(3): 857-868. |
[17] | EDDY R L, SVENNINGSEN S, KIRBY M, et al. Is computed tomography airway count related to asthma severity and airway structure and function?[J]. Am J Respir Crit Care Med, 2020, 201(8): 923-933. |
[18] | FAIN S B, GONZALEZ-FERNANDEZ G, PETERSON E T, et al. Evaluation of structure-function relationships in asthma using multidetector CT and hyperpolarized 3He MRI[J]. Acad Radiol, 2008, 15(6): 753-762. |
[19] | AGUSTí A, CELLI B R, CRINER G J, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary[J]. Eur Respir J, 2023, 61(4): 2300239. |
[20] |
DE LANGE E E, ALTES T A, PATRIE J T, et al. Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry[J]. Chest, 2006, 130(4): 1055-1062.
doi: 10.1378/chest.130.4.1055 pmid: 17035438 |
[21] | VIRGINCAR R S, CLEVELAND Z I, KAUSHIK S S, et al. Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease[J]. NMR Biomed, 2013, 26(4): 424-435. |
[22] | CAREY K J, HOTVEDT P, MUMMY D G, et al. Comparison of hyperpolarized 3He-MRI, CT based parametric response mapping, and mucus scores in asthmatics[J]. Front Physiol, 2023, 14: 1178339. |
[23] | COCCONCELLI E, BERNARDINELLO N, GIRAUDO C, et al. Characteristics and prognostic factors of pulmonary fibrosis after COVID-19 pneumonia[J]. Front Med (Lausanne), 2021, 8: 823600. |
[24] | XIE R L, WANG Y, ZHAO Y N, et al. Lung nodule pre-diagnosis and insertion path planning for chest CT images[J]. BMC Med Imaging, 2023, 23(1): 22. |
[25] | DODD J D, LAVELLE L P, FABRE A, et al. Imaging in cystic fibrosis and non cystic fibrosis bronchiectasis[J]. Semin Resp Crit Care, 2015, 36(2): 194-206. |
[1] | LIU Ying, YUAN Binhua, ZHANG Haowei. Design of a Portable Magnetic Resonance Multi-source RF Pulse Generator [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 285-298. |
[2] | JIANG Chaochao, YAO Shouquan, XU Juncheng, JIANG Yu. Design of the Broadband Magnetic Resonance Microcoil [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 299-307. |
[3] | SHU Wei. Diagnostic Efficacy Comparison of B-scan Ultrasonography and MRI in Fetal Skeletal Abnormalities [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 265-274. |
[4] | SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248. |
[5] | KOU Xinhui, ZHANG Yubing. Study on the Enantiomeric Recognition of Chiral Ureas Containing Amino Acid Units [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 221-230. |
[6] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[7] | LI Keyan, CHENG Xin, CHEN Junfei, CAO Li, HUANG Zhen, LIU Chaoyang. Development of Low-noise Preamplifier for Low-field NMR [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 321-333. |
[8] | TANG Shihao, YANG Jinyu, XU Yajie, WANG Ya, PENG Bowen, GAO Yuhao, YANG Xiaodong. A Design of Circularly Polarized Coil for Low-field Nuclear Magnetic Resonance Spectrometers [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 308-320. |
[9] | HE Fengcheng, LI Mingdao, LV Xinglong, YAO Shouquan, JIANG Yu. Software Design of the Handheld NMR Spectrometer Console [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[10] | . Structural Identification and Complete NMR Spectral Assignments of 4-Isopropoxy-1-(trifluoroacetyl)naphthalene [J]. Chinese Journal of Magnetic Resonance, 0, (): 0-0. |
[11] | CHEN Bo, LIU Quan, MA Lei, CHEN Shunian, JIA Yaqi, ZHU Bin, GUO Junwang. Simulink-based Simulation Study of Continuous Wave Electron Paramagnetic Resonance Signal Processing and Detection [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 174-183. |
[12] | GU Jiajia, WANG Yuanjun. Hybrid Attention and Multiscale Module for Alzheimer's Disease Classification [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 103-116. |
[13] | ZUO Bingyu, SHI Lili, SONG Jia, ZHAO Yang, LI Qian. Application of Estrogen and Tumor Markers Combined with DCE-MRI in Diagnosis and Clinical Staging of Cervical Cancer [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 164-173. |
[14] | MENG Jingxin, WANG Yuanjun. Research Progress on Tractography of Superficial White Matter Based on Diffusion Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 205-220. |
[15] | CHEN Jingcong, RAN Fengwei, ZHANG Haowei, LIU Ying. Optimization Methodology for Meningioma and Acoustic Neuroma Detection Model Based on DCGAN [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 117-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||