Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (3): 231-248.doi: 10.11938/cjmr20253149cstr: 32225.14.cjmr20253149
• Articles • Previous Articles Next Articles
SUI Meiju1,2, ZHANG Lei1,2, WANG Ruifang1,2, LUO Yingying1, LI Sha1, QIU Maosong1, XU Qiuyi1,2, CHEN Daiqin1,2, CHEN Shizhen1,2,3,*(), ZHOU Xin1,2,3
Received:
2025-03-14
Published:
2025-09-05
Online:
2025-05-06
Contact:
* Tel: 027-87198631, E-mail: chenshizhen@apm.ac.cn.CLC Number:
SUI Meiju, ZHANG Lei, WANG Ruifang, LUO Yingying, LI Sha, QIU Maosong, XU Qiuyi, CHEN Daiqin, CHEN Shizhen, ZHOU Xin. MRI-traceable Nanoenzyme for Cascade Catalysis-enhanced Immunotherapy[J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 231-248.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Experimental reagents and materials
试剂/材料名称 | 生产厂商 | 规格 | ||
---|---|---|---|---|
氢氧化钠 | 中国医药集团有限公司 | 500 g | ||
浓盐酸 | 中国医药集团有限公司 | 500 mL | ||
四水合氯化锰 | 上海阿拉丁生化科技股份有限公司 | 500 g | ||
血红素 | 上海迈瑞尔生化科技有限公司 | 25 g | ||
谷胱甘肽 | 上海麦克林生化科技有限公司 | 25 g | ||
十二水合磷酸氢二钠 | 中国医药集团有限公司 | 500 g | ||
二水合磷酸二氢钠 | 中国医药集团有限公司 | 500 g | ||
5,5'-二硫代双(2-硝基苯甲酸)(DTNB) | 上海毕得医药科技有限公司 | 10 g | ||
3,3',5,5'-四甲基联苯胺(TMB) | 西格玛奥德里奇贸易有限公司 | 250 mg | ||
5,5-二甲基-1-吡咯啉-N-氧化物(DMPO) | 西格玛奥德里奇贸易有限公司 | 100 mg | ||
吲哚菁绿(ICG) | 上海麦克林生化科技股份有限公司 | 100 mg | ||
4',6-二脒基-2-苯基吲哚(DAPI)染色液 | 上海碧云天生物技术股份有限公司 | 50 mL | ||
2,7-二氯荧光素二乙酸酯(DCFH-DA) | 北京索莱宝科技有限公司 | 25 mg | ||
无菌PBS | HyClone | 500 mL | ||
胎牛血清 | 长沙赛尔博克斯生物科技有限公司 | 50 mL | ||
RPMI 1640基础培养基 | Gibco Life Sciences公司 | 500 mL | ||
DMEM基础培养基 | Gibco Life Sciences公司 | 500 mL | ||
青霉素-链霉素溶液 | Gibco Life Sciences公司 | 100 mL | ||
胰蛋白酶 | Gibco Life Sciences公司 | 100 mL | ||
抗体:CD80、CD86 | 赛默飞世尔科技有限公司 | 100 μg | ||
小鼠αPD-L1抗体 | BioXcell | 5 mg | ||
IFN-β ELISA检测试剂盒 | 武汉贝茵莱生物科技有限公司 | 96 T | ||
TNF-α ELISA检测试剂盒 | 武汉贝茵莱生物科技有限公司 | 96 T | ||
4T1、BEAS-2B细胞 | 中国科学院细胞库 | 1瓶 | ||
Balb/c小鼠 | 湖北贝恩特生物科技有限公司 | 6周龄雌鼠 |
Table 2
Experimental instruments
仪器名称 | 生产厂商 | 型号 |
---|---|---|
pH计 | METTLER TOLEDO | FE20 |
磁力加热搅拌器 | IKA | HS 7 |
高速离心机 | Beckman Coulter | Advanti J-25 |
动态光散射仪 | Malvern | ZETASIZER Nano-ZS90 |
透射电子显微镜 | JEOL | JEM-2100 |
扫描电子显微镜 | Carl Zeiss AG | Zeiss SIGMA |
紫外-可见吸收光谱仪 | Thermo Fisher Scientific | Evolution 220 |
傅里叶变换红外吸光谱仪 | Thermo Fisher Scientific | Nicolet iS10 |
X射线光电子能谱仪 | Thermo Fisher Scientific | ESCA Lab 250Xi |
电子顺磁共振波谱仪 | Bruker | Elexsys E580-10/12 |
808 nm激光器 | 北京镭志威 | LWIRL808 |
红外热成像仪 | 武汉红视热像科技 | HS160 |
溶氧仪 | 上海雷磁 | JPB-607A |
电感耦合等离子体质谱仪 | 德国耶拿分析仪器有限公司 | PQ-MS |
细胞培养箱 | Thermo Fisher Scientific | HERACELL 150i |
细胞计数仪 | 瑞沃德 | C100-SE/C100 |
无菌操作台 | Thermo Fisher Scientific | MCS ADVANTAGE |
共聚焦激光扫描显微镜 | Nikon | A1R/A1 |
流式细胞仪 | Beckman Coulter | CytoFLEX |
小动物麻醉机 | 瑞沃德 | R450 |
小动物光声成像仪 | iThera Medical GmbH | MOST inVision 256-TF |
小动物活体荧光成像仪 | Perkin Elmer | IVIS spectrum imaging system |
7T磁共振成像仪 | Bruker | BioSpec 70/20 USR |
Fig. 1
The characterization of MH NPs. (a) TEM and TEM mapping image of MH NPs; (b) Size distribution of MH NPs; (c) Zeta potential of MH NPs; (d) XPS spectra of Fe element in MH NPs; (e) XPS spectra of Mn element in MH NPs; (f) UV-vis absorption spectra of hemin and MH NPs; (g) FT-IR spectra of hemin and MH NPs
Fig. 2
The enzyme-like catalytic performance of MH NPs. (a) Schematic illustration of catalytic process of MH NPs; (b) UV-vis absorption spectra and photographs of DTNB after reaction of GSH with MH NPs solution at different concentrations (12.5, 25, 50, 100, and 200 μg·mL-1) ; (c) The generation of O2 over time after the reaction of H2O2 with MH NPs of different concentrations (0, 10, 20, 30, 40 and 50 μg·mL-1) ; (d) ESR spectra of H2O2 reacting with MH NPs (90 μL, 25 μg·mL-1), Fe2+ and H2O, respectively; (e) UV-vis absorption spectra of different reaction systems [TMB, TMB + H2O2, TMB + H2O2 + MH NPs (10 μL, 0.1 mg·mL-1)]; (f) UV-vis absorption spectra of reaction system [TMB + H2O2 + MH NPs (10 μL, 0.1 mg·mL-1)] at different times
Fig. 3
The photothermal and photoacoustic performance of MH NPs. (a) The heating curve and infrared thermographs of MH NPs solution (500 μg·mL-1) and H2O under NIR laser irradiation (808 nm laser, 500 mW·cm-2); (b) Temperature change curves of MH NPs solutions with various concentrations irradiated by 808 nm laser (500 mW·cm-2); (c) Temperature change curves of MH NPs solution (500 μg·mL-1) irradiated by 808 nm laser of different power densities; (d) Calculation of the photothermal conversion efficiency of MH NPs; (e) Temperature change curves of MH NPs solutions under the cyclic irradiation of 808 nm laser (500 mW·cm-2); (f) Correlation of the photoacoustic signal intensity with the concentrations of MH NPs solutions and photoacoustic images of MH NPs solutions at different concentrations
Fig. 4
The T2-weighted MR imaging capability of MH NPs. (a) T2 MRI images of MH NPs at various pH conditions; (b) The linear relationship for the transverse relaxation rate of MH NPs as a function of Mn concentration under different pH conditions; (c) In vitro release curve of Mn2+ from MH NPs at various pH conditions (pH = 7.4, 6.5, and 5.5); (d) T2 MRI images of MH NPs after reaction with various concentrations of GSH; (e) The linear relationship for the transverse relaxation rate of MH NPs as a function of Mn concentration under different GSH conditions; (f) In vitro release curve of Mn2+ from MH NPs after reaction with various concentrations of GSH
Fig. 5
In vitro assessments of photothermal-enhanced anti-tumor catalytic therapy mediated by MH NPs. (a) Confocal fluorescence images of the cellular ROS level in 4T1 cells after different treatments (scale bar: 100 μm); (b) Semi-quantitative analysis of ROS level in 4T1 cells after different treatments; (c) Confocal fluorescence images of the cellular LPO level in 4T1 cells after different treatments (scale bar: 100 μm); (d) Semi-quantitative analysis of LPO level in 4T1 cells after different treatments; (e) Western blot assay of the STING signaling pathway-related protein expressed in 4T1 cells after different treatments; (f) Semi-quantitative analysis of the STING pathway-related protein expressed in 4T1 cells after different treatments; (g) The scheme of transwell system utilized to explore the maturation of dendritic cells induced by different treatments for 4T1 cells; (h) The expression level of IFN-β in the cell supernatant; (i) The expression level of TNF-α in the cell supernatant; (j) The level of mature dendritic cells measured by flow cytometry
Fig. 6
In vivo biodistribution and MRI & PAI performance of MH NPs. (a) In vivo fluorescence images of 4T1 tumor-bearing mice at different time points after intravenous injection with MH@ICG NPs; (b) The fluorescence variation curves of tumor sites in 4T1 tumor-bearing mice at different time points after intravenous injection with MH@ICG NPs; (c) Fluorescence images of major organs of 4T1 tumor-bearing mice after intravenous injection with MH@ICG NPs for 72 h; (d) Semi-quantitive analysis of MH@ICG NPs in major organs of 4T1 tumor-bearing mice after intravenous injection with MH@ICG NPs for 72 h; (e) T2 MRI images of 4T1 tumor-bearing mice after intravenous injection with MH NPs at different time points; (f) Photoacoustic images of tumor sites in 4T1 tumor-bearing mice after intravenous injection with MH NPs at different time points; (g) The T2 MRI signal variation curves of tumor sites in 4T1 tumor-bearing mice at different time points after intravenous injection with MH NPs; (h) The photoacoustic signal variation curves of tumor sites in 4T1 tumor-bearing mice at different time points after intravenous injection with MH NPs
Fig. 7
Photothermal-enhanced MH NPs-mediated anti-tumor catalytic immunotherapy synergized with αPD-L1 against 4T1 tumor xenografts. (a) Schematic illustration of the photothermal-enhanced MH NPs-meidated anti-tumor catalytic immunotherapy synergized with αPD-L1; (b, e) Primary and distant tumor growth curves of the 4T1 tumor-bearing mice with different treatments; (c, f) The weight of primary and distant tumors in 4T1 tumor-bearing mice with different treatments; (d, g) Photographs of primary and distant tumors in 4T1 tumor-bearing mice with different treatments; (h) H&E and TUNEL staining histological analysis of primary tumor sections from 4T1 tumor-bearing mice with different treatments
[1] | ANSELL S M, LESOKHIN A M, BORRELLO I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J]. N Engl J Med, 2014, 372(4): 311-319. |
[2] | HODI F S, O'DAY S J, MCDERMOTT D F, et al. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723. |
[3] | MELLMAN I, COUKOS G, DRANOFF G. Cancer immunotherapy comes of age[J]. Nature, 2011, 480(7378): 480-489. |
[4] |
VANNEMAN M, DRANOFF G. Combining immunotherapy and targeted therapies in cancer treatment[J]. Nat Rev Cancer, 2012, 12(4): 237-251.
doi: 10.1038/nrc3237 pmid: 22437869 |
[5] | ALI S, KJEKEN R, NIEDERLAENDER C, et al. The European medicines agency review of kymriah (tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma[J]. Oncologist, 2020, 25(2): e321-e327. |
[6] | SHI Y, LAMMERS T. Combining nanomedicine and immunotherapy[J]. Acc Chem Res, 2019, 52(6): 1543-1554. |
[7] |
MUSETTI S, HUANG L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy[J]. ACS Nano, 2018, 12(12): 11740-11755.
doi: 10.1021/acsnano.8b05893 pmid: 30508378 |
[8] | LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma[J]. N Engl J Med, 2015, 373(1): 23-34. |
[9] |
FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chem Rev, 2017, 117(22): 13566-13638.
doi: 10.1021/acs.chemrev.7b00258 pmid: 29048884 |
[10] | CHENG L, JIANG D, KAMKAEW A, et al. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy[J]. Adv Funct Mater, 2017, 27(34): 1702928. |
[11] | LI B, XIE X, CHEN Z, et al. Tumor inhibition achieved by targeting and regulating multiple key elements in EGFR signaling pathway using a self-assembled nanoprodrug[J]. Adv Funct Mater, 2018, 28(22): 1800692. |
[12] | LI Y, XU N, ZHU W, et al. Nanoscale melittin@zeolitic imidazolate frameworks for enhanced anticancer activity and mechanism analysis[J]. ACS Appl Mater Interfaces, 2018, 10(27): 22974-22984. |
[13] |
GONG Y, WANG P, CAO R, et al. Exudate absorbing and antimicrobial hydrogel integrated with multifunctional curcumin-loaded magnesium polyphenol network for facilitating burn wound healing[J]. ACS Nano, 2023, 17(22): 22355-22370.
doi: 10.1021/acsnano.3c04556 pmid: 37930078 |
[14] | REN Z, SUN S, SUN R, et al. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy[J]. Adv Mater, 2020, 32(6): e1906024. |
[15] |
YANG W, DENG C, SHI X, et al. Structural and molecular fusion MRI nanoprobe for differential diagnosis of malignant tumors and follow-up chemodynamic therapy[J]. ACS Nano, 2023, 17(4): 4009-4022.
doi: 10.1021/acsnano.2c12874 pmid: 36757738 |
[16] |
ZHANG Z, LI B, XIE L, et al. Metal-phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy[J]. ACS Nano, 2021, 15(10): 16934-16945.
doi: 10.1021/acsnano.1c08026 pmid: 34661387 |
[17] | XIONG Y X, WANG W, DENG Q Y, et al. Mild photothermal therapy boosts nanomedicine antitumor efficacy by disrupting DNA mechanics damage repair pathways and modulating tumor[J]. Nano Today, 2023, 49: 101767. |
[18] | ZHANG Y, TANG S Q, FENG X Y, et al. Tumor-targeting gene-photothermal synergistic therapies based on multifunctional polydopamine nanoparticles[J]. Chem Eng J, 2023, 457: 141315. |
[19] |
ZHOU M X, WANG J X, PAN J X, et al. Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy[J]. Nat Commun, 2023, 14(1): 3593.
doi: 10.1038/s41467-023-39035-x pmid: 37328484 |
[20] | WANG B J, WANG T, JIANG T Z, et al. Circulating immunotherapy strategy based on pyroptosis and STING pathway: Mn-loaded paclitaxel prodrug nanoplatform against tumor progression and metastasis[J]. Biomaterials, 2024, 306: 122472. |
[21] | CHEN C, SHEN X T, SHI S L, et al. Biomimetic Fe3+ metal-phenolic networks enable DNAzyme and Cas9 RNP delivery for synergistic tumor ferroptosis-immunotherapy[J]. Chem Eng J, 2024, 499: 156050. |
[22] | INTAKHAD J, VACHIRAARUNWONG A, WONGPOOMCHAI R, et al. Ferric-tannic nanoparticles inhibit early-stage hepatocarcinogenesis by activating tumor immune responses in rats[J]. Adv Ther, 2024, 7(12): 2400348. |
[23] | CHEN H Q, LIU L L, MA A Q, et al. Noninvasively immunogenic sonodynamic therapy with manganese protoporphyrin liposomes against triple-negative breast cancer[J]. Biomaterials, 2021, 269: 120639. |
[24] | LI Z F, WANG C M, DAI C, et al. Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy[J]. Biomaterials, 2022, 287: 121668. |
[25] | LIU J J, LIU S W, WU Y C, et al. Curcumin doped zeolitic imidazolate framework nanoplatforms as multifunctional nanocarriers for tumor chemo/immunotherapy[J]. Biomater Sci, 2022, 10(9): 2384-2393. |
[26] | XIA Y X, JI X R, LI Q R. Research progress on application of immune checkpoint inhibitors combined with curcumin in tumor treatment[J]. Journal of Medical Forum, 2025, 46(7): 780-784. |
夏雨轩, 纪翛然, 李倩如. 免疫检查点抑制剂联合姜黄素在肿瘤治疗中的应用研究进展[J]. 医药论坛杂志, 2025, 46(7): 780-784. | |
[27] | YAN H, HUANG S. Anti-tumor effect of curcumin on human colorectal cancer SW-620 cells[J]. Journal of Tianjin Medical University, 2024, 30(6): 479-484. |
阎晗, 黄珊. 姜黄素对人结直肠癌SW-620细胞抗肿瘤效果的研究[J]. 天津医科大学学报, 2024, 30(6): 479-484. | |
[28] | CHEN L, LI Y Y, GAO F Y, et al. Study on the effect of dihydroartemisinin on ferroptosis in ovarian cancer cells by regulating SLC7A11/GPX4 signaling pathway[J]. Journal of Chinese Medicinal Materials, 2024, (12): 3103-3107. |
陈露, 李由由, 杲飞莹, 等. 双氢青蒿素通过调节SLC7A11/GPX4信号通路诱导卵巢癌细胞铁死亡[J]. 中药材, 2024, (12): 3103-3107. | |
[29] | XU J R, JIA F J, CHEN J L, et al. Research of dihydroartemisinin on anti-colorectal cancer by regulating MAPK/PI3K/Akt signaling pathway[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2024, 38(2): 83-92. |
徐嘉若, 贾丰菁, 陈佳靓, 等. 双氢青蒿素通过调控MAPK/PI3K/Akt信号通路抗结直肠癌作用研究[J]. 上海中医药大学学报, 2024, 38(2): 83-92. | |
[30] | HU X X, ZHAO Y, WANG Y, et al. Study on the nano-drug delivery system and anti-tumor mechanism of artemisinin and its derivatives[J]. Chemical Reagents, 2024, 46(7): 11-19. |
胡晓娴, 赵雨, 王赟, 等. 青蒿素及其衍生物纳米药物递送系统和抗肿瘤机制研究[J]. 化学试剂, 2024, 46(7): 11-19. | |
[31] |
GUO Y J, DENG L, LI J, et al. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism[J]. ACS Nano, 2011, 5(2): 1282-1290.
doi: 10.1021/nn1029586 pmid: 21218851 |
[32] | GOLUB E, FREEMAN R, WILLNER I. A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme[J]. Angew Chem Int Ed Engl, 2011, 50(49): 11710-11714. |
[33] |
YANG Y, ZHU W J, FENG L Z, et al. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy[J]. Nano Lett, 2018, 18(11): 6867-6875.
doi: 10.1021/acs.nanolett.8b02732 pmid: 30303384 |
[34] | LI K, XU K, HE Y, et al. Functionalized tumor-targeting nanosheets exhibiting Fe(II) overloading and GSH consumption for ferroptosis activation in liver tumor[J]. Small, 2021, 17(40): e2102046. |
[35] |
LI X C, ZHANG X, SONG L, et al. Nanozyme as tumor energy homeostasis disruptor to augment cascade catalytic therapy[J]. ACS Nano, 2024, 18(51): 34656-34670.
doi: 10.1021/acsnano.4c09982 pmid: 39661982 |
[36] | CHAO F R, CAO C L, XU Y, et al. Sprayable hydrogel for pH-responsive nanozyme-derived bacteria-infected wound healing[J]. ACS Appl Mater Interfaces, 2025, 17(4): 5921-5932. |
[37] |
ELIA I, HAIGIS M C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism[J]. Nat Metab, 2021, 3(1): 21-32.
doi: 10.1038/s42255-020-00317-z pmid: 33398194 |
[38] | JIN M Z, JIN W L. The updated landscape of tumor microenvironment and drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 166. |
[39] | FAN Y, CHEN L, ZHENG Y, et al. Nanoparticle-based activatable MRI probes for disease imaging and monitoring[J]. Chem Biomed Imaging, 2023, 1(3): 192-204. |
[40] |
WU F, DU Y Q, YANG J N, et al. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death[J]. ACS Nano, 2022, 16(3): 3647-3663.
doi: 10.1021/acsnano.1c06777 pmid: 35266697 |
[41] | YANG B C, DAI Z C, ZHANG G R, et al. Ultrasmall ternary FePtMn nanocrystals with acidity-triggered dual-Ions release and hypoxia relief for multimodal synergistic chemodynamic/photodynamic/photothermal cancer therapy[J]. Adv Healthc Mater, 2020, 9(21): e1901634. |
[42] |
ZHAO Z Y, DONG S M, LIU Y, et al. Tumor microenvironment-activable manganese-boosted catalytic immunotherapy combined with PD-1 checkpoint blockade[J]. ACS Nano, 2022, 16(12): 20400-20418.
doi: 10.1021/acsnano.2c06646 pmid: 36441901 |
[43] | NEMETH T, PALLIER A, ÇELIK Ç, et al. Water-soluble Mn(III)-porphyrins with high relaxivity and photosensitization[J]. Chem Biomed Imaging, 2025, 3(1): 5-14. |
[44] | ZENG Q B, GUO Q N, LUO Q, et al. Manganese-based contrast agents for MRI[J]. Chin J Magn Reson Imaging, 2014, 5(4): 315-320. |
曾庆斌, 郭茜旎, 罗晴, 等. 锰对比剂在MRI中的应用[J]. 磁共振成像, 2014, 5 (4): 315-320. | |
[45] | ZHANG H X, YANG S P. Research progress of manganese(II)-based contrast agents in magnetic resonance imaging[J]. Journal of Shanghai Normal University (Natural Sciences), 2025, 54(1): 53-61. |
张何仙, 杨仕平. 锰(II)基造影剂在磁共振成像中的研究进展[J]. 上海师范大学学报(自然科学版), 2025, 54(1): 53-61. | |
[46] |
CHEN L, DING C P, CHAI K J, et al. Nanohole-array induced metallic molybdenum selenide nanozyme for photoenhanced tumor-specific therapy[J]. ACS Nano, 2023, 17(18): 18148-18163.
doi: 10.1021/acsnano.3c05000 pmid: 37713431 |
[47] | ZHU Y L, ZHAO R X, FENG L, et al. Dual nanozyme-driven PtSn bimetallic nanoclusters for metal-enhanced tumor photothermal and catalytic therapy[J]. ACS Nano, 2023, 17(7): 6833-6848. |
[48] | PENG L, ZHAO A G, LI R K, et al. Self-propelled in situ polymerized nanoparticles activating the STING pathway for enhanced bladder cancer immunotherapy[J]. Adv Sci, 2025, 12: 2502750. |
[1] | MA Yingxue, ZHAO Yanqiang, YANG Xiaodong, JIANG Bin, TAO Cheng. Opportunities and Challenges of High-field and Ultra-high-field Magnetic Resonance Imaging in China [J]. Chinese Journal of Magnetic Resonance, 2025, 42(3): 334-344. |
[2] | CHEN Qun, YANG Zijian, CHENG Xinyi, JIA Siyi, DU Xiaoxia, WANG Mengxing. Application of Magnetic Resonance Imaging Technology in Pediatric Exercise Intervention Research [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 195-204. |
[3] | PANG Qifan, WANG Zhichao, WU Yupeng, LI Jianqi. The Impact of K-Space Filling Strategy on Fat Artifacts in APT Imaging Based on FLASH Sequence [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 443-453. |
[4] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
[5] | LIU Ying, LIN Ling, YUAN Binhua, ZHANG Haowei. Research Progress of MRI Gradient Waveform Generator [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 99-115. |
[6] | LI Pan,FANG Delei,ZHANG Junxia,MA Debei. Magnetic Resonance Compatibility Analysis Method of Surgical Robotic System Based on Image Quality Evaluation [J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 79-91. |
[7] |
De-gang TANG,Hong-chuang LI,Xiao-ling LIU,Lei SHI,Hai-dong LI,Chao-hui YE,Xin ZHOU.
A Simulation Study on the Effect of the High Permittivity Materials Geometrical Structure on the Transmit Field |
[8] | Zhen-yu WANG, Ying-shan WANG, Jin-ling MAO, Wei-wei MA, Qing LU, Jie SHI, Hong-zhi WANG. Magnetic Resonance Images Segmentation of Synovium Based on Dense-UNet++ [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 208-219. |
[9] | Yan MA, Cang-ju XING, Liang XIAO. Knee Joint Image Segmentation and Model Construction Based on Cascaded Network [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 184-195. |
[10] | Jun LUO, Sheng-ping LIU, Xing YANG, Jia-sheng WANG, Ye LI. Design of a 5 T Non-magnetic Magnetic Resonance Radio Frequency Power Amplifier [J]. Chinese Journal of Magnetic Resonance, 2022, 39(2): 163-173. |
[11] | Ju-min ZHANG,Shi-zhen CHEN,Xin ZHOU. Dual-modal MRI T1-T2 Contrast Agent Based on Dynamic Organic Gadolinium Nanoparticles [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 11-19. |
[12] | Zhi-chao WANG,Ji-lei ZHANG,Yu ZHAO,Ting HUA,Guang-yu TANG,Jian-qi LI. CEST Imaging of the Abdomen with Neural Network Fitting [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 33-42. |
[13] | Han-wei WANG,Hao WU,Jing TIAN,Jun-feng ZHANG,Peng ZHONG,Li-zhao CHEN,Shu-nan WANG. The Diagnostic Value of Quantitative Parameters of T2/FLAIR Mismatch Sign in Evaluating the Molecular Typing of Lower-grade Gliomas [J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 56-63. |
[14] | Long XIAO,Xiao-lei ZHU,Ye-qing HAN,Shi-zhen CHEN,Xin ZHOU. Design and Application of Micellar Magnetic Resonance Imaging Molecular Probe [J]. Chinese Journal of Magnetic Resonance, 2021, 38(4): 474-490. |
[15] | Ying-dan HU,Yue CAI,Xu-xia WANG,Si-jie LIU,Yan KANG,Hao LEI,Fu-chun LIN. Magnetic Resonance Imaging the Brain Structures Involved in Nicotine Susceptibility in Rats [J]. Chinese Journal of Magnetic Resonance, 2021, 38(3): 345-355. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||