Chinese Journal of Magnetic Resonance ›› 2025, Vol. 42 ›› Issue (4): 364-377.doi: 10.11938/cjmr20253153cstr: 32225.14.cjmr20253153
• Articles • Previous Articles Next Articles
ZHANG Mingyu1,3,#, XIAO Sa1,2,#, SHI Shengjie1, ZHANG Xuecheng1, ZHOU Xin1,2,3,*(
)
Received:2025-03-26
Published:2025-12-05
Online:2025-06-16
Contact:
* Tel: 027-87198631, E-mail: xinzhou@wipm.ac.cn.
CLC Number:
ZHANG Mingyu, XIAO Sa, SHI Shengjie, ZHANG Xuecheng, ZHOU Xin. Research on a Multi-modal Enhanced Denoising Diffusion Model for Hyperpolarized 129Xe MRI[J]. Chinese Journal of Magnetic Resonance, 2025, 42(4): 364-377.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of different models and the model in this paper in terms of evaluation indicators
| 方法 | PSNR | SSIM |
|---|---|---|
| 噪声图像 | 17.973±3.237** | 0.512±0.163** |
| NLM | 20.862±3.481** | 0.584±0.079** |
| UNLM | 24.319±3.125** | 0.431±0.153** |
| DnCNN | 30.758±2.739** | 0.814±0.053** |
| HTC-net | 31.915±2.452** | 0.843±0.057** |
| DDPM | 32.116±2.283* | 0.827±0.055** |
| DDPM-HXe | 33.264±2.594 | 0.847±0.058 |
| [1] | KERN A L, VOGEL-CLAUSSEN J. Hyperpolarized gas MRI in pulmonology[J]. Brit J Radiol, 2018, 91(1084): 20170647. |
| [2] | LI H D, ZHANG Z Y, HAN Y Q, et al. Hyperpolarized gas magnetic resonance imaging of the lung[J]. Chinese J Magn Reson, 2014, 31(3): 307-320. |
| 李海东, 张智颖, 韩叶清, 等. 超极化气体肺部磁共振成像[J]. 波谱学杂志, 2014, 31(3): 307-320. | |
| [3] | WANG G X, YANG H Y, LI J, et al. Overview and progress of X-nuclei magnetic resonance imaging in biomedical studies[J]. Magn Reson Lett, 2023, 3(4): 327-343. |
| [4] | LI H D, ZHAO X C, WANG Y J, et al. Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized 129Xe MRI[J]. Sci Adv, 2021, 7(1): eabc8180. |
| [5] |
ZHOU Q, RAO Q, LI H D, et al. Evaluation of injuries caused by coronavirus disease 2019 using multi-nuclei magnetic resonance imaging[J]. Magn Reson Lett, 2021, 1(1): 2-10.
doi: 10.1016/j.mrl.2021.100009 pmid: 35673615 |
| [6] |
MACOVSKI A. Noise in MRI[J]. Magn Reson Med, 1996, 36(3): 494-497.
pmid: 8875425 |
| [7] |
MOHAN J, KRISHNAVENI V, GUO Y. A survey on the magnetic resonance image denoising methods[J]. Biomed Signal Process Control, 2014, 9(1): 56-69.
doi: 10.1016/j.bspc.2013.10.007 |
| [8] |
MANJÓN J V, CARBONELL-CABALLERO J, LULL J J, et al. MRI denoising using Non-Local Means[J]. Med Image Anal, 2008, 12(4): 514-523.
doi: 10.1016/j.media.2008.02.004 pmid: 18381247 |
| [9] |
MANJÓN J V, COUPE P, BUADES A, et al. New methods for MRI denoising based on sparseness and self-similarity[J]. Med Image Anal, 2012, 16(1): 18-27.
doi: 10.1016/j.media.2011.04.003 pmid: 21570894 |
| [10] |
SODERLUND S A, BDAIWEI A S, PLUMMER J W, et al. Improved diffusion-weighted hyperpolarized 129Xe lung MRI with patch-based higher-order, singular value decomposition denoising[J]. Acad Radiol, 2024, 31(12): 5289-5299.
doi: 10.1016/j.acra.2024.06.029 |
| [11] |
SHI S J, WANG C, XIAO S, et al. Magnetic resonance image denoising for Rician noise using a novel hybrid transformer-CNN network (HTC-net) and self-supervised pretraining[J]. Med Phys, 2025, 52: 1643-1660.
doi: 10.1002/mp.17562 pmid: 39641989 |
| [12] |
XU Y, HAN K, ZHOU Y M, et al. Deep adaptive blending network for 3D magnetic resonance image denoising[J]. IEEE J Biomed Health Inform, 2021, 25(9): 3321-3331.
doi: 10.1109/JBHI.2021.3087407 |
| [13] |
DOLZ J, GOPINATH K, YUAN J, et al. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE Trans Med Imaging, 2018, 38(5): 1116-1126.
doi: 10.1109/TMI.42 |
| [14] |
ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans Image Process, 2017, 26(7): 3142-3155.
doi: 10.1109/TIP.83 |
| [15] |
DOU Q, WANG Z, FENG X, et al. MRI denoising with a non-blind deep complex-valued convolutional neural network[J]. NMR Biomed, 2024, 38(1): e5291.
doi: 10.1002/nbm.v38.1 |
| [16] |
JU R Y, CHEN C C, CHIANG J S, et al. Resolution enhancement processing on low quality images using swin transformer based on interval dense connection strategy[J]. Multimedia Tools Appl, 2023, 83(5): 14839-14855.
doi: 10.1007/s11042-023-16088-0 |
| [17] |
CONG S, ZHOU Y. A review of convolutional neural network architectures and their optimizations[J]. Artif Intell Rev, 2022, 56(3):1905-1969.
doi: 10.1007/s10462-022-10213-5 |
| [18] | TIAN M, SONG K K. Boosting magnetic resonance image denoising with generative adversarial networks[J]. IEEE Access, 2021: 62266-62275. |
| [19] |
JIANG D S, DOU W Q, VOSTERS L, et al. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network[J]. Jpn J Radiol, 2018, 36(9): 566-574.
doi: 10.1007/s11604-018-0758-8 pmid: 29982919 |
| [20] | NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]// MEILA M, ZHANG T. Proceedings of the 38th International Conference on Machine Learning. Cambridge, MA: PMLR, 2021, 139: 8162-8171. |
| [21] |
CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45(9): 10850-10869.
doi: 10.1109/TPAMI.2023.3261988 |
| [22] |
LI S Y, XIONG H, CHEN Y Z. DiffCharge: Generating EV charging scenarios via a denoising diffusion model[J]. IEEE Trans Smart Grid, 2024, 15(4): 3936-3949.
doi: 10.1109/TSG.2024.3360874 |
| [23] |
MA X, ZOU M, FANG X, et al. Convergent-diffusion denoising model for multi-scenario CT image reconstruction[J]. Comput Med Imaging Graph, 2025, 120: 102491.
doi: 10.1016/j.compmedimag.2024.102491 |
| [24] |
KUANG G, KEITH J, GEORGES F E, et al. PET image denoising based on denoising diffusion probabilistic model[J]. Eur J Nucl Med Mol Imaging, 2023, 51(2): 358-368.
doi: 10.1007/s00259-023-06417-8 |
| [25] | CHEN X M, ZHAO X C, SUN X P, et al. Study on the automatic accumulation-thawing device of hyperpolarized 129Xe[J]. Chinese J Magn Reson, 2022, 39(3): 316-326. |
|
陈小明, 赵修超, 孙献平, 等. 超极化 129Xe自动收集-升华装置研究[J]. 波谱学杂志, 2022, 39(3): 316-326.
doi: 10.11938/cjmr20222998 |
|
| [26] | CHEN Q, LI H D, FANG Y, et al. Association of 129Xe ventilation functional MRI with pulmonary lesion types[J]. Chinese J Magn Reson, 2024, 41(3): 276-285. |
|
陈琪, 李海东, 方媛, 等. 129Xe通气功能MRI与肺部病灶类型关联研究[J]. 波谱学杂志, 2024, 41(3): 276-285.
doi: 10.11938/cjmr20243103 |
|
| [27] |
LI Z M, XIAO S, WANG C, et al. Complementation-reinforced network for integrated reconstruction and segmentation of pulmonary gas MRI with high acceleration[J]. Med Phys, 2023, 51(1): 378-393.
doi: 10.1002/mp.16591 pmid: 37401205 |
| [28] |
ZHOU W, CONRAD A B, RAHIM H S, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612.
doi: 10.1109/TIP.2003.819861 |
| [29] |
LI Z M, XIAO S, WANG C, et al. Encoding enhanced complex CNN for accurate and highly accelerated MRI[J]. IEEE Trans Med Imaging, 2024, 43(5): 1828-1840.
doi: 10.1109/TMI.2024.3351211 |
| [30] |
TAHIR A B, BRAGG M C, WILD M J, et al. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning[J]. Phys Med Biol, 2017, 62(17): 7114-7130.
doi: 10.1088/1361-6560/aa8074 pmid: 28800298 |
| [31] | CHITWAN S, JONATHAN H, WILLIAM C, et al. Image super-resolution via iterative refinement[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 45(4): 4713-4726. |
| [1] | LI Yinghao, WANG Lihui, WANG Sucheng, ZHU Zhongqi, HUANG Changdong, LI Renfeng, CAO Kaiming, HU Haiyang, JIA Yiming, LIANG Songtao, YANG Guang, LU Qing, WANG Hongzhi. Study on Pancreas Automatic Segmentation, Regional Quantification, and Diabetes Assessment [J]. Chinese Journal of Magnetic Resonance, 2025, 42(4): 378-389. |
| [2] | GAO Zhaoyao, ZHANG Zhan, HU Liangliang, XU Guangyu, ZHOU Sheng, HU Yuxin, LIN Zijie, ZHOU Chao. PMRI Image Reconstruction Method Based on Virtual Coils and GRAPPA-enhanced Network [J]. Chinese Journal of Magnetic Resonance, 2025, 42(4): 390-401. |
| [3] | CAO Fei, XU Qianqian, CHEN Hao, ZU Jie, LI Xiaowen, TIAN Jin, BAO Lei. An Intelligent Diagnosis Method for NIID Based on Cross Self-supervision and DWI [J]. Chinese Journal of Magnetic Resonance, 2025, 42(2): 154-163. |
| [4] | XUE Peiyang, GENG Chen, LI Yuxin, BAO Yifang, LU Yucheng, DAI Yakang. A Classification Method for Cerebral Aneurysms in TOF-MRA Based on Improved 3D ResNet50 Model [J]. Chinese Journal of Magnetic Resonance, 2025, 42(1): 56-66. |
| [5] | NING Xinzhou, HUANG Zhen, CHEN Xiqu, LIU Xinjie, CHEN Gang, ZHANG Zhi, BAO Qingjia, LIU Chaoyang. Research on Transformer Super-Resolution Reconstruction Algorithm for Ultrafast Spatiotemporal Encoding Magnetic Resonance Imaging [J]. Chinese Journal of Magnetic Resonance, 2024, 41(4): 454-468. |
| [6] | CHEN Qi, LI Haidong, FANG Yuan, SHEN Luyang, LIU Wuji, LUO Ming, LI Yecheng, ZHANG Ming, ZHAO Xiuchao, SHI Lei, ZHOU Qian, HAN Yeqing, ZHOU Xin. Association of 129Xe Ventilation Functional MRI with Pulmonary Lesion Types [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 276-285. |
| [7] | YANG Liming, WANG Yuanjun. Research Progress of Denoising Algorithms for Diffusion Tensor Images [J]. Chinese Journal of Magnetic Resonance, 2024, 41(3): 341-361. |
| [8] | Dai Junlong, He Cong, Wu Jie, Bian Yun. Pancreatic Cystic Neoplasms Segmentation Network Combining Dual Decoding and Global Attention Upsampling Modules [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 151-161. |
| [9] | YANG Yu, CHEN Bo, WU Liubin, LIN Enping, HUANG Yuqing, CHEN Zhong. Spectrum Reconstruction for Laplace NMR: From Handcraft Regularization to Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 191-208. |
| [10] | CHANG Bo, SUN Haoyun, GAO Qingyu, WANG Lijia. Research Progress on Cardiac Segmentation in Different Modal Medical Images by Traditional Methods and Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(2): 224-244. |
| [11] | XU Zhenshun, YUAN Xiaohan, HUANG Ziheng, SHAO Chengwei, WU Jie, BIAN Yun. Multi-source Feature Classification Model of Pancreatic Mucinous and Serous Cystic Neoplasms Based on Deep Learning [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 19-29. |
| [12] | ZHOU Minxiong, QI Xuan, DU Bin, QI Dong, WANG Haijie, YANG Guang, Cai Wenmei, LIU Mengxiao, ZHANG Huiting, YAN Xu, NIE Shengdong, HE Yongsheng. Evaluation of the Impact of b-Value Ranges on Six Body Diffusion Models in Prostate Application [J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 9-18. |
| [13] | LAI Jiawen, WANG Yuling, CAI Xiaoyu, ZHOU Lihua. Multidimensional Information Fusion Method for Meniscal Tear Classification Based on CNN-SVM [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 423-434. |
| [14] | WANG Hui, WANG Tiantian, WANG Lijia. Squeeze-and-excitation Residual U-shaped Network for Left Myocardium Segmentation Based on Cine Cardiac Magnetic Resonance Images [J]. Chinese Journal of Magnetic Resonance, 2023, 40(4): 435-447. |
| [15] | Li Yijie, YANG Xinyu, YANG Xiaomei. Magnetic Resonance Image Reconstruction of Multi-scale Residual Unet Fused with Attention Mechanism [J]. Chinese Journal of Magnetic Resonance, 2023, 40(3): 307-319. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||