波谱学杂志 ›› 2015, Vol. 32 ›› Issue (2): 248-260.doi: 10.11938/cjmr20150208
所属专题: 虚拟专刊:MRI方法与应用
汪臣才,李 昭,林永雅*
收稿日期:
2015-03-22
修回日期:
2015-05-15
出版日期:
2015-06-05
在线发表日期:
2015-06-05
作者简介:
*通讯联系人:林永雅,电话:+1-310 206 2856,E-mail:yylin@chem.ucla.edu.
基金资助:
The Camille and Henry Dreyfus Foundation (TC-05-053), National Science Foundation (DMS-0833863, CHE-1112574, and CHE-1416598), and Hirshberg Foundation for Pancreatic Cancer Research.
WANG Chen-cai,LI Zhao,LIN Yung-ya*
Received:
2015-03-22
Revised:
2015-05-15
Published:
2015-06-05
Online:
2015-06-05
About author:
WANG Chen-cai (1990-), male, born in Jilin, PhD. candidate. His research focuses on MRI.
*Corresponding author: LIN Yung-ya, Tel: +1-310 206 2856, E-mail: yylin@chem.ucla.edu.
Supported by:
The Camille and Henry Dreyfus Foundation (TC-05-053), National Science Foundation (DMS-0833863, CHE-1112574, and CHE-1416598), and Hirshberg Foundation for Pancreatic Cancer Research.
摘要:
磁共振热疗(magnetic resonance hyperthermia)是近年来新兴的一种纳米医学治疗方法,由磁共振的硬件架构产生特定交变磁场,有效地加热磁性纳米粒子,以直接或间接地杀死癌细胞,体现诊疗一体化.提高磁性纳米粒子的加热效率是当前磁共振热疗领域亟待解决的难题之一.磁性纳米粒子的加热效率不仅与粒子本身的大小、性质以及尺寸分布有关,还和聚集状态有关.该研究利用3D Metropolis 蒙特卡罗模拟方法,模拟了不同温度下磁性纳米粒子的磁共振热动力学行为及其团聚与分离现象;并通过修正过的郎之万方程,建立了相变临界温度与外加磁场频率的函数关系.模拟结果显示,磁性纳米粒子悬浮液中多聚体的相对含量随着温度的升高而降低,达到临界温度后,多聚体完全分离成单体;而提高交变磁场频率可以显著降低临界温度,且存在临界频率,高于此临界频率后临界温度不再受外加磁场频率影响,达到稳定.因而在临界频率下预热磁性纳米粒子悬浮液,使得多聚体分离成单体,可优化磁性纳米粒子的热疗效率.
中图分类号:
汪臣才,李 昭,林永雅*. 优化磁共振纳米医学中磁性纳米粒子的热疗效率[J]. 波谱学杂志, 2015, 32(2): 248-260.
WANG Chen-cai,LI Zhao,LIN Yung-ya*. Optimizing Magnetic Nanoparticle Hyperthermia Effect in Magnetic Resonance Nanomedicine[J]. Chinese Journal of Magnetic Resonance, 2015, 32(2): 248-260.
[1] Jordan A, Wust P, F?hling H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia[J]. Int J Hyperther, 2009, 25: 499-511.[2] Krishnan K M. Biomedical Nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy[J]. IEEE Trans Magn, 2010, 46: 2 523-2 558.[3] Gordon R T, Hines J R, Gordon D A. Biophysical approach to cancer treatment via intracellular temperature and biophysical alterations[J]. Med Hypotheses, 1979, 5: 83-102.[4] Jordan A, Wust P, Scholz R, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro[J]. Int J Hyperther, 1996, 12: 705-722.[5] Alexey O I, Sofia S K, Valentin S M, et al. Ferrofluid aggregation in chains under the influence of a magnetic field[J]. J Magn Magn Mater, 2006, 300(l): e206-e209.[6] Morais P C, Gonçalves G R R, Bakuzis A F, et al. Experimental evidence of dimer disruption in ionic ferrofluid: A ferromagnetic resonance investigation[J]. J Magn Magn Mater, 2001, 225: 84-88.[7] Zhong J, Xiang Q, Massa L O, et al. Second-order-like cluster-monomer transition within magnetic fluids and its impact upon the magnetic susceptibility[J]. Nanoscale Res Lett, 2012, 7: 167.[8] Du Z, Liu W, Zhong J, et al. Signature of cluster disruption within magnetic fluid samples: The key information provided by low frequency alternating current susceptibility measurements[J]. J Appl Phys, 2014, 115: 194310.[9] Ganguly R, Zellmer B, Puri I K. Field-induced Self-assembled ferrofluid aggregation in pulsatile flow[J]. Phys Fluids, 2005, 17: 097104.[10] Xiang Q, Zhong J, Zhou M, et al. AC field dependence of cluster disruption in magnetic fluids[J]. J Appl Phys, 2011, 109: 07B317.[11] Wang X, Gu H, Yang Z. The heating effect of magnetic fluids in an alternating magnetic field[J]. J Magn Magn Mater, 2005, 293: 334.[12] Rosensweig R E. Heating magnetic fluid with alternating magnetic field[J]. J Magn Magn Mater, 2002, 252: 370. [13] Ondeck C L, Habib A H, Ohodnicki P, et al. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating[J]. J Appl Phys, 2009, 105: 07B324.[14] Skumiel A, ?abowski M. The heating effect of the biocompatible ferrofluid in an alternating magnetic field[J]. Molecular and Quantum Acoustics, 2006, 27: 233-238.[15] Chantrell R W, Popplewell J, Charles S W. Measurements of particle-size distribution parameters in ferrofluids[J]. IEEE Trans Magn, 1978, 14 (5): 975-977.[16] Hwang D W, Lin Y Y, Hwang L P. Studies of magnetic resonance imaging with active feedback RF field[J]. Chinese J Magn Reson, 2010, 27 (3): 409-416.[17] Huang S Y, Walls J D, Lin Y Y. Periodic control of spin turbulence in solution magnetic resonance[J]. Chinese J Magn Reson, 2010, 27 (3): 425-435.[18] Li Z, Hsu C H, Dimitrov N, et al. Sensitive imaging of magnetic nanoparticles for cancer detection by active feedback MR[J]. Magn Reson Med, 2015, DOI: 10.1002/mrm.25632.[19] Hilger I, Kaiser W A. Iron oxide-based nanostructures for MRI and magnetic hyperthermia[J]. Nanomedicine 2012, 7(9): 1 443-1 459. |
[1] | 刘颖, 袁斌华, 章浩伟. 便携式磁共振多源射频脉冲发生器设计[J]. 波谱学杂志, 2025, 42(3): 285-298. |
[2] | 江超超, 姚守权, 徐俊成, 蒋瑜. 宽频磁共振微线圈设计[J]. 波谱学杂志, 2025, 42(3): 299-307. |
[3] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
[4] | 隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248. |
[5] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
[6] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
[7] | 李科言, 程鑫, 陈俊飞, 曹丽, 黄臻, 刘朝阳. 用于低场NMR的低噪声前置放大器研制[J]. 波谱学杂志, 2025, 42(3): 321-333. |
[8] | 汤世豪, 杨谨毓, 徐雅洁, 王亚, 彭博文, 高宇昊, 杨晓冬. 一种用于低场磁共振波谱仪的圆极化线圈设计[J]. 波谱学杂志, 2025, 42(3): 308-320. |
[9] | 何丰丞 李明道 吕兴龙 姚守权 蒋瑜. 掌上型核磁共振谱仪控制台软件设计[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 郑佳琪 王意浓 元思文 尹田鹏. 4-异丙氧基-1-(三氟乙酰基)萘的结构解析和NMR数据完整归属[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 陈博, 刘泉, 马蕾, 陈淑年, 贾亚琦, 朱斌, 郭俊旺. 基于Simulink的连续波电子顺磁共振信号处理与检测仿真研究[J]. 波谱学杂志, 2025, 42(2): 174-183. |
[12] | 顾佳佳, 王远军. 混合注意力和多尺度模块的阿尔茨海默病分类方法[J]. 波谱学杂志, 2025, 42(2): 103-116. |
[13] | 左冰玉, 石丽莉, 宋佳, 赵阳, 李倩. 雌激素、肿瘤标志物联合DCE-MRI在宫颈癌诊断及临床分期中的应用[J]. 波谱学杂志, 2025, 42(2): 164-173. |
[14] | 孟靖欣, 王远军. 基于扩散磁共振的大脑浅表白质纤维束研究进展[J]. 波谱学杂志, 2025, 42(2): 205-220. |
[15] | 陈静聪, 冉凤伟, 章浩伟, 刘颖. 基于DCGAN的脑膜瘤与听神经瘤检测模型优化方法研究[J]. 波谱学杂志, 2025, 42(2): 117-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||