波谱学杂志 ›› 2016, Vol. 33 ›› Issue (2): 269-280.doi: 10.11938/cjmr20160209
所属专题: 虚拟专刊:MRI方法与应用
高雯菁1, 李锵1, 陈品元2, 杜振丰3, 赵一平4,5
收稿日期:
2015-05-28
修回日期:
2016-04-10
出版日期:
2016-06-05
在线发表日期:
2016-06-05
通讯作者:
赵一平,电话:+886-3-2118800#5469,E-mail:yiping@mail.cgu.edu.tw.
E-mail:yiping@mail.cgu.edu.tw
作者简介:
高雯菁(1991-),女,山西大同人,硕士研究生,信息与通信工程专业.
基金资助:
长庚大学研究计划资助项目(UERPD2D0081);长庚大学健康老化研究中心资助项目(CMRPD1B0332);长庚医院相对辅助款(BMRPC78).
GAO Wen-jing1, LI Qiang1, CHEN Pin-yuan2, TOH Cheng-hong3, CHAO Yi-ping4,5
Received:
2015-05-28
Revised:
2016-04-10
Published:
2016-06-05
Online:
2016-06-05
摘要:
通过限制球形卷积(constrained spherical deconvolution,CSD)和神经纤维追踪技术(tractography),以了解大脑左右半球的弓状束(arcuate fasciculus,AF)神经结构完整性与语言理解能力的相关性.该文使用磁共振成像(MRI)仪对14例大脑左半球罹患肿瘤的右利手患者进行了术前术后扫描(每次扫描均伴随一次波士顿失语症测试),并用分析软件DSI Studio计算术前术后左右半球弓状束的四项扩散指标,并进行了比较.结果发现左脑弓状束有两项指标在术前术后有非常显著的差异(p<0.01),而右脑四项指标均无显著改变(p>0.05).另外,该文还将扩散指标与患者相对应的语言测试所反映的语言理解能力进行了相关性分析,发现无论术前术后,左半球弓状束与语言理解能力相关系数r介于0.6~0.8之间,而右半球则仅介于0.3~0.4之间.上述结果表明,语言理解能力与左侧弓状束密切相关(p<0.01),而与右侧弓状束相关性不大,此结果与以往研究者对大脑侧化的认知相符.
中图分类号:
高雯菁, 李锵, 陈品元, 杜振丰, 赵一平. 应用限制球形卷积解析弓状束的结构特性与语言理解表现的相关性[J]. 波谱学杂志, 2016, 33(2): 269-280.
GAO Wen-jing, LI Qiang, CHEN Pin-yuan, TOH Cheng-hong, CHAO Yi-ping. Correlation Between Structural Characteristics of Arcuate Fasciculus and Performances of Language Comprehension Revealed by Diffusion Imaging Based Tractography[J]. Chinese Journal of Magnetic Resonance, 2016, 33(2): 269-280.
[1] Griffiths J D, Mraslen-Wilson W D, Stamatakis E A, et al. Functional organization of the neural language system:Dorsal and ventral pathways are critical for syntax[J]. Cereb Cortex, 2013, 23(1):139-147.[2] Maldonado I L, Morita-Gasser S, Duffau H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study[J]. Brain Struct and Funct, 2011, 216(3):263-274.[3] Parker G J, Luzzi S, Alexander D C, et al. Lateralization of ventral and dorsal auditory-language pathways in the human brain[J]. Neuroimage, 2005, 24(3):656-666.[4] Tournier J D, Yeh C H, Calamante F, et al. Resolving crossing fibres using constrained spherical deconvolution:Validation using diffusion-weighted imaging phantom data[J]. Neuroimage, 2008, 42(2):617-625.[5] Frey S, Campbell J S, Pike G B, et al. Dissociating the human language pathways with high angular resolution diffusion fiber tractography[J]. J Neurosci, 2008, 28(45):11435-11444.[6] Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations[J]. J Neurosurg, 2010, 112(3):503-511.[7] Johansen-Berg H, Behrens T E. Diffusion MRI:From Quantitative Measurement to in vivo Neuroanatomy[M]. USA:Academic Press, 2013.[8] Song S K, Sun S W, Ramsbottom M J, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[J]. Neuroimage, 2002, 17(3):1429-1436.[9] Yeh F C, Verstynen T D, Wang Y, et al. Deterministic diffusion fiber tracking improved by quantitative anisotropy[J]. PloS One, 2013, 8(11):80713.[10] Ma Kai(马凯), Wang Xiao-zhou(王晓舟), Gao Dian-shuai(高殿帅), et al. Nerve fiber tracking methods using diffusion tensor imaging(应用弥散张量成像实现神经纤维追踪的方法)[J]. Journal of Clinical Rehabilitative Tissue Engineering Research(中国组织工程研究与临床康复), 2010, 14(43):7983-7986.[11] Yang Xiang-xiang(杨香香). Research on Visualization Based on Multiple Gradient Direction Diffusion Tensor Imaging of Brain Tissue(基于多梯度方向扩散张量成像的脑神经纤维可视化研究)[D]. Tianjin(天津):Tianjin University(天津大学), 2010.[12] Kuhnt D, Bauer M H, Egger J, et al. Fiber tractography based on diffusion tensor imaging compared with high-angular-resolution diffusion imaging with compressed sensing:initial experience[J]. Neurosurgery, 2013, 72(1):165-175.[13] Chen Ke-hsin(陈可欣), Fan Hsin-ya(范馨亚), Cao Su-ping(曹书萍), et al. Probabilistic language pathways based HARDI tractography(基于高夹角分辨率扩散磁振造影神经径路追踪的人脑语言机率路径图谱)[J]. Chinese J Magn Reson(波谱学杂志), 2010, 27(3):417-424.[14] Jiang Xiao-ping(姜小平), Li Jian-qi(李建奇), Fan Ming-xia(范明霞), et al. Line-scan diffusion tensor imaging on low field strength MRI scanner(低场MRI系统中线扫描扩散张量成像方法的研究)[J]. Chinese J Magn Reson(波谱学杂志), 2008, 25(4):470-477.[15] Moser M J, Breger R K, Khatri B O, et al. 17th Annual Meeting of the Society for Magnetic Resonance in Medicine[C]. USA:Proc Intl Soc Mag Reson Med, 2009.[16] Saur D, Kreher B W, Schnell S, et al. Ventral and dorsal pathways for language[J]. P Natl Acad Sci U S A, 2008, 105(46):18035-18040.[17] Leclercq D, Duffau H, Delmaire C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations:Clinical article[J]. J Neurosurg, 2010, 112(3):503-511.[18] Madler B, Drabycz S A, Kolind S H, et al. Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T-2 relaxation and diffusion tensor anisotropy in human brain[J]. Magn Reson Imaging, 2008, 26(7):874-888.[19] Song S K, Sun S W, Ramsbottom M J, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[J]. Neuroimage, 2002, 17(3):1429-1436.[20] Zhuang Yan(庄严), Shen Jia-lin(沈加林), Xu Jian-rong(许建荣), et al. DTI study on Broca aphasia in patients with ischemic srtoke(卒中后Broca失语症的DTI研究)[J]. Chinese J Med Imaging Technol(中国医学影像技术), 2008, 24(1):37-40.[21] Wan C Y, Zheng X, Marchina S, et al. Intensive therapy induces contralateral white matter changes in chronic stroke patients with Broca's aphasia[J]. Brain Lang, 2014, 136:1-7.[22] Paldino M J, Hedges K, Zhang W. Independent contribution of individual white matter pathways to language function in pediatric epilepsy patients[J]. Neuro Image-Clin, 2014, 6:327-332.[23] Glasser M F, Rilling J K. DTI tractography of the human brain's language pathways[J]. Cereb Cortex, 2008, 18(11):2471-2482.[24] Bello L, Fava E, Gallucci M, et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas[J]. Neuro-Oncology, 2006, 8(4):314-314.[25] Powell H W, Parker G J, Alexander D C, et al. Hemispheric asymmetries in language-related pathways:A combined functional MRI and tractography study[J]. Neuroimage, 2006, 32(1):388-399. |
[1] | 刘颖, 袁斌华, 章浩伟. 便携式磁共振多源射频脉冲发生器设计[J]. 波谱学杂志, 2025, 42(3): 285-298. |
[2] | 江超超, 姚守权, 徐俊成, 蒋瑜. 宽频磁共振微线圈设计[J]. 波谱学杂志, 2025, 42(3): 299-307. |
[3] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
[4] | 隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248. |
[5] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
[6] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
[7] | 李科言, 程鑫, 陈俊飞, 曹丽, 黄臻, 刘朝阳. 用于低场NMR的低噪声前置放大器研制[J]. 波谱学杂志, 2025, 42(3): 321-333. |
[8] | 汤世豪, 杨谨毓, 徐雅洁, 王亚, 彭博文, 高宇昊, 杨晓冬. 一种用于低场磁共振波谱仪的圆极化线圈设计[J]. 波谱学杂志, 2025, 42(3): 308-320. |
[9] | 何丰丞 李明道 吕兴龙 姚守权 蒋瑜. 掌上型核磁共振谱仪控制台软件设计[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 郑佳琪 王意浓 元思文 尹田鹏. 4-异丙氧基-1-(三氟乙酰基)萘的结构解析和NMR数据完整归属[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 陈博, 刘泉, 马蕾, 陈淑年, 贾亚琦, 朱斌, 郭俊旺. 基于Simulink的连续波电子顺磁共振信号处理与检测仿真研究[J]. 波谱学杂志, 2025, 42(2): 174-183. |
[12] | 顾佳佳, 王远军. 混合注意力和多尺度模块的阿尔茨海默病分类方法[J]. 波谱学杂志, 2025, 42(2): 103-116. |
[13] | 左冰玉, 石丽莉, 宋佳, 赵阳, 李倩. 雌激素、肿瘤标志物联合DCE-MRI在宫颈癌诊断及临床分期中的应用[J]. 波谱学杂志, 2025, 42(2): 164-173. |
[14] | 孟靖欣, 王远军. 基于扩散磁共振的大脑浅表白质纤维束研究进展[J]. 波谱学杂志, 2025, 42(2): 205-220. |
[15] | 陈静聪, 冉凤伟, 章浩伟, 刘颖. 基于DCGAN的脑膜瘤与听神经瘤检测模型优化方法研究[J]. 波谱学杂志, 2025, 42(2): 117-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||