波谱学杂志 ›› 2024, Vol. 41 ›› Issue (1): 1-8.doi: 10.11938/cjmr20233069cstr: 32225.14.cjmr20233069
王欢1,陶志清2,3,姜国胜1,张许3,王冠3(),禾立春2,3(
),刘买利3
收稿日期:
2023-05-16
出版日期:
2024-03-05
在线发表日期:
2023-06-30
通讯作者:
Tel: 86-18602761433, E-mail: 作者简介:
†共同第一作者.
基金资助:
WANG Huan1,TAO Zhiqing2,3,JIANG Guosheng1,ZHANG Xu3,WANG Guan3(),HE Lichun2,3(
),LIU Maili3
Received:
2023-05-16
Published:
2024-03-05
Online:
2023-06-30
Contact:
Tel: 86-18602761433, E-mail: 摘要:
HdeA是一种定位于细菌周质的分子伴侣,在维持蛋白质稳态中起着重要的作用.以往对HdeA的研究主要是在体外条件下进行,限制了人们对HdeA在天然环境下发挥作用机制的理解.细菌外膜囊泡是细菌自发分泌到胞外环境的外膜囊泡,其内容物与周质环境相似.本研究将HdeA富集到细菌外膜囊泡(OMVs)中,通过核磁共振波谱研究HdeA在OMVs中的构象变化.结果表明,HdeA在其原位环境中表现出酸依赖性的构象变化.在低pH条件下HdeA主要通过S15、W16、T17、S27、T32、E36、G54、T57、C66、Q71、F74及D83等残基启动其分子伴侣功能.此外本研究也为原位研究其它周质分子伴侣的功能提供了新方法.
中图分类号:
王欢, 陶志清, 姜国胜, 张许, 王冠, 禾立春, 刘买利. HdeA在细菌外膜囊泡环境下的原位NMR研究[J]. 波谱学杂志, 2024, 41(1): 1-8.
WANG Huan, TAO Zhiqing, JIANG Guosheng, ZHANG Xu, WANG Guan, HE Lichun, LIU Maili. In situ Investigation of HdeA in Bacterial Outer Membrane Vesicles Using NMR Spectroscopy[J]. Chinese Journal of Magnetic Resonance, 2024, 41(1): 1-8.
[1] |
CHRISTOPH W, ANDREAS P. Protein folding in the periplasm of Escherichia coli[J]. Mol Microbiol, 1994, 12: 685-692.
doi: 10.1111/mmi.1994.12.issue-5 |
[2] |
HONG W Z, WU Y E, FU X M, et al. Chaperone-dependent mechanisms for acid resistance in enteric bacteria[J]. Trends Microbiol, 2012, 20(7): 328-335.
doi: 10.1016/j.tim.2012.03.001 pmid: 22459131 |
[3] |
YU X C, HU Y F, DING J, et al. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone[J]. J Biol Chem, 2019, 294(9): 3192-3206.
doi: 10.1074/jbc.RA118.006398 |
[4] |
GARRISON M A, CROWHURST K A. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation[J]. Protein Sci, 2014, 23(2): 167-178.
doi: 10.1002/pro.2402 pmid: 24375557 |
[5] | ZHAN J H, HU Q, ZHU Q J, et al. Track the conformational change of unlabeled yeast cytochrome c in cell homogenate using NMR[J]. Chinese J Magn Reson, 2023, 40(1): 22-29. |
占建华, 胡琴, 朱勤俊, 等. 基于磁共振的胞浆中无标记酵母细胞色素c构象变化追踪[J]. 波谱学杂志, 2023, 40(1): 22-29. | |
[6] |
XING C Y, CHENGFENG Y, JIENV D, et al. Characterizations of the interactions between Escherichia coli periplasmic chaperone HdeA and its native substrates during acid stress[J]. Biochemistry, 2017, 56 (43): 5748-5757
doi: 10.1021/acs.biochem.7b00724 |
[7] |
SALMON L, STULL F, SAYLE S, et al. The mechanism of HdeA unfolding and chaperone activation[J]. J Mol Biol, 2018, 430(1): 33-40.
doi: S0022-2836(17)30540-5 pmid: 29138002 |
[8] |
ZHAI Z N, WU Q, ZHENG W W, et al. Roles of structural plasticity in chaperone HdeA activity are revealed by 19F NMR[J]. Chem Sci, 2016, 7: 2222.
doi: 10.1039/C5SC04297F |
[9] |
WANG G, YU G J, GAO D W. Protein conformational exchanges modulated by the environment of outer membrane vesicles[J]. J Phys Chem Lett, 2023, 14 (11): 2772-2777.
doi: 10.1021/acs.jpclett.3c00152 pmid: 36897994 |
[10] |
THOMA J, MANIOGLU S, KALBERMATTER D, et al. Protein-enriched outer membrane vesicles as a native platform for outer membrane protein studies[J]. Comm Biol, 2018, 1: 23.
doi: 10.1038/s42003-018-0027-5 |
[11] |
NIKAIDO H, VAARA M. Molecular basis of bacterial outer membrane permeability[J]. Microbiol Rev, 1985, 49(1): 1-32.
doi: 10.1128/mr.49.1.1-32.1985 pmid: 2580220 |
[12] |
SCHIRMER T. General and specific porins from bacterial outer membranes[J]. J Struct Biol, 1998, 121(2): 101-109.
pmid: 9615433 |
[13] |
KOEBNIK R, LOCHER K P, VAN GELDER P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell[J]. Mol Microbiol, 2000, 37(2): 239-253.
doi: 10.1046/j.1365-2958.2000.01983.x pmid: 10931321 |
[14] |
JOHANNES T, BJÖRN M B. High-resolution in situ NMR spectroscopy of bacterial envelope proteins in outer membrane vesicles[J]. Biochemistry, 2020, 59(17): 1656-1660.
doi: 10.1021/acs.biochem.9b01123 |
[15] |
VRANKEN W F, BOUCHER W, STEVENS T J, et al. The CCPN data model for NMR spectroscopy: development of a software pipeline[J]. Proteins, 2005, 59(4): 687-696.
doi: 10.1002/prot.v59:4 |
[16] | HOEKSTRA D, VAN DER LAAN J W, DE LEIJ L, et al. Release of outer membrane fragments from normally growing Escherichia coli[J]. Biochim Biophys Acta, 1976, 455(3): 889-899. |
[17] | MUG-OPSTELTEN D, WITHOLT B. Preferential release of new outer membrane fragments by exponentially growing Escherichia coli[J]. Biochim Biophys Acta, 1978, 508(2): 287-295. |
[18] |
KESTY N C, KUEHN M J. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles[J]. J Biol Chem, 2004, 279(3): 2069-2076.
doi: 10.1074/jbc.M307628200 |
[19] |
HAURAT M F, ADUSE-OPOKU J, RANGARAJAN M, et al. Selective sorting of cargo proteins into bacterial membrane vesicles[J]. J Biol Chem, 2011, 286(2): 1269-1276.
doi: 10.1074/jbc.M110.185744 pmid: 21056982 |
[20] | BONNINGTON K E, KUEHN M J. Protein selection and export via outer membrane vesicles[J]. Biochim Biophys Acta, 2014, 1843(8): 1612-1619. |
[21] |
SONG X, LV T, CHEN J, et al. Characterization of residue specific protein folding and unfolding dynamics in cells[J]. J Am Chem Soc, 2019, 141(29): 11363-11366.
doi: 10.1021/jacs.9b04435 pmid: 31305080 |
[22] |
TAKAOKA Y, KIOI Y, MORITO A, et al. Quantitative comparison of protein dynamics in live cells and in vitro by in-cell 19F NMR[J]. Chem Comm, 2013, 49(27): 2801-2803.
doi: 10.1039/c3cc39205h |
[23] |
WILLIAMSON M P. Using chemical shift perturbation to characterize ligand binding[J]. Prog Nucl Magn Reson Spectrosc, 2013, 73: 1-16.
doi: 10.1016/j.pnmrs.2013.02.001 |
[1] | 刘颖, 袁斌华, 章浩伟. 便携式磁共振多源射频脉冲发生器设计[J]. 波谱学杂志, 2025, 42(3): 285-298. |
[2] | 江超超, 姚守权, 徐俊成, 蒋瑜. 宽频磁共振微线圈设计[J]. 波谱学杂志, 2025, 42(3): 299-307. |
[3] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
[4] | 隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248. |
[5] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
[6] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
[7] | 李科言, 程鑫, 陈俊飞, 曹丽, 黄臻, 刘朝阳. 用于低场NMR的低噪声前置放大器研制[J]. 波谱学杂志, 2025, 42(3): 321-333. |
[8] | 汤世豪, 杨谨毓, 徐雅洁, 王亚, 彭博文, 高宇昊, 杨晓冬. 一种用于低场磁共振波谱仪的圆极化线圈设计[J]. 波谱学杂志, 2025, 42(3): 308-320. |
[9] | 何丰丞 李明道 吕兴龙 姚守权 蒋瑜. 掌上型核磁共振谱仪控制台软件设计[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 郑佳琪 王意浓 元思文 尹田鹏. 4-异丙氧基-1-(三氟乙酰基)萘的结构解析和NMR数据完整归属[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 陈博, 刘泉, 马蕾, 陈淑年, 贾亚琦, 朱斌, 郭俊旺. 基于Simulink的连续波电子顺磁共振信号处理与检测仿真研究[J]. 波谱学杂志, 2025, 42(2): 174-183. |
[12] | 顾佳佳, 王远军. 混合注意力和多尺度模块的阿尔茨海默病分类方法[J]. 波谱学杂志, 2025, 42(2): 103-116. |
[13] | 左冰玉, 石丽莉, 宋佳, 赵阳, 李倩. 雌激素、肿瘤标志物联合DCE-MRI在宫颈癌诊断及临床分期中的应用[J]. 波谱学杂志, 2025, 42(2): 164-173. |
[14] | 孟靖欣, 王远军. 基于扩散磁共振的大脑浅表白质纤维束研究进展[J]. 波谱学杂志, 2025, 42(2): 205-220. |
[15] | 陈静聪, 冉凤伟, 章浩伟, 刘颖. 基于DCGAN的脑膜瘤与听神经瘤检测模型优化方法研究[J]. 波谱学杂志, 2025, 42(2): 117-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||