波谱学杂志 ›› 2025, Vol. 42 ›› Issue (4): 364-377.doi: 10.11938/cjmr20253153cstr: 32225.14.cjmr20253153

• 研究论文 • 上一篇    下一篇

超极化129Xe MRI的多模态增强去噪扩散模型研究

张明玉1,3,#, 肖洒1,2,#, 石胜杰1, 张学成1, 周欣1,2,3,*()   

  1. 1.磁共振波谱与成像全国重点实验室武汉磁共振中心,中国科学院精密测量科学与技术创新研究院湖北 武汉 430071
    2.中国科学院大学北京 100049
    3.海南省生物医学工程重点实验室海南大学生物医学工程学院海南 海口 570228
  • 收稿日期:2025-03-26 出版日期:2025-12-05 在线发表日期:2025-06-16
  • 通讯作者: * Tel: 027-87198631, E-mail: xinzhou@wipm.ac.cn.
  • 作者简介:# 共同第一作者
  • 基金资助:
    国家自然科学基金(82127802);国家自然科学基金(21921004);中国科学院战略性先导研究计划(XDB0540000);中国科学院战略性先导研究计划(XDC0170000);湖北省重点技术基金(2021ACA013);湖北省尖刀攻关工程专项(2023BAA021);湖北省自然科学基金(2023AFB1061)

Research on a Multi-modal Enhanced Denoising Diffusion Model for Hyperpolarized 129Xe MRI

ZHANG Mingyu1,3,#, XIAO Sa1,2,#, SHI Shengjie1, ZHANG Xuecheng1, ZHOU Xin1,2,3,*()   

  1. 1. State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
  • Received:2025-03-26 Published:2025-12-05 Online:2025-06-16
  • Contact: * Tel: 027-87198631, E-mail: xinzhou@wipm.ac.cn.

摘要:

超极化129Xe MRI作为一种新兴的磁共振成像(MRI)技术,在多种肺部疾病的诊疗中发挥了重要作用.然而在采集过程中产生的噪声会对数据质量造成影响,降低了该技术在临床应用中的可靠性.为此,本文提出了一种基于深度学习的多模态特征增强条件扩散模型,以实现去除噪声,提升图像质量的目的.该模型通过输入相同屏气状态下采集的1H MRI作为约束条件,设计了一种多模态特征增强模块,用于提高模型对多模态信息的利用和对微小局部变换的敏感性.实验结果表明,在与其他方法对比中,本文方法具有更好的去噪性能和更强的图像细节保留能力.在通气缺陷分割任务中,分割结果进一步证明了本文方法对提升129Xe MRI临床可靠性的作用.

关键词: 扩散模型, 超极化129Xe, 多模态, 图像去噪, 深度学习

Abstract:

Hyperpolarized 129Xe magnetic resonance imaging (MRI) is an emerging medical imaging technique that plays an important role in the diagnosis and treatment of numerous lung diseases. However, the noise generated during the acquisition process affects the data quality and limits the reliability of the technique in clinical diagnosis and treatment. In this paper, we propose a multimodal feature-enhanced conditional diffusion model based on deep learning that aims to remove noise and improve image quality. The model inputs acquired 1H MRI as constraints, and a multimodal feature enhancement module is specially designed, which aims to enhance the effectiveness of the model in exploiting multimodal information and the sensitivity to changes in local details of the image. The experimental results show that the method has the best denoising performance and detail preservation compared to other methods, and demonstrate in a ventilation defect segmentation task that the method can enhance the reliability of 129Xe MRI in clinical practice.

Key words: diffusion model, hyperpolarized 129Xe MRI, multi-modal, image denoising, deep learning

中图分类号: