| [1] |
KERN A L, VOGEL-CLAUSSEN J. Hyperpolarized gas MRI in pulmonology[J]. Brit J Radiol, 2018, 91(1084): 20170647.
|
| [2] |
LI H D, ZHANG Z Y, HAN Y Q, et al. Hyperpolarized gas magnetic resonance imaging of the lung[J]. Chinese J Magn Reson, 2014, 31(3): 307-320.
|
|
李海东, 张智颖, 韩叶清, 等. 超极化气体肺部磁共振成像[J]. 波谱学杂志, 2014, 31(3): 307-320.
|
| [3] |
WANG G X, YANG H Y, LI J, et al. Overview and progress of X-nuclei magnetic resonance imaging in biomedical studies[J]. Magn Reson Lett, 2023, 3(4): 327-343.
|
| [4] |
LI H D, ZHAO X C, WANG Y J, et al. Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized 129Xe MRI[J]. Sci Adv, 2021, 7(1): eabc8180.
|
| [5] |
ZHOU Q, RAO Q, LI H D, et al. Evaluation of injuries caused by coronavirus disease 2019 using multi-nuclei magnetic resonance imaging[J]. Magn Reson Lett, 2021, 1(1): 2-10.
doi: 10.1016/j.mrl.2021.100009
pmid: 35673615
|
| [6] |
MACOVSKI A. Noise in MRI[J]. Magn Reson Med, 1996, 36(3): 494-497.
pmid: 8875425
|
| [7] |
MOHAN J, KRISHNAVENI V, GUO Y. A survey on the magnetic resonance image denoising methods[J]. Biomed Signal Process Control, 2014, 9(1): 56-69.
doi: 10.1016/j.bspc.2013.10.007
|
| [8] |
MANJÓN J V, CARBONELL-CABALLERO J, LULL J J, et al. MRI denoising using Non-Local Means[J]. Med Image Anal, 2008, 12(4): 514-523.
doi: 10.1016/j.media.2008.02.004
pmid: 18381247
|
| [9] |
MANJÓN J V, COUPE P, BUADES A, et al. New methods for MRI denoising based on sparseness and self-similarity[J]. Med Image Anal, 2012, 16(1): 18-27.
doi: 10.1016/j.media.2011.04.003
pmid: 21570894
|
| [10] |
SODERLUND S A, BDAIWEI A S, PLUMMER J W, et al. Improved diffusion-weighted hyperpolarized 129Xe lung MRI with patch-based higher-order, singular value decomposition denoising[J]. Acad Radiol, 2024, 31(12): 5289-5299.
doi: 10.1016/j.acra.2024.06.029
|
| [11] |
SHI S J, WANG C, XIAO S, et al. Magnetic resonance image denoising for Rician noise using a novel hybrid transformer-CNN network (HTC-net) and self-supervised pretraining[J]. Med Phys, 2025, 52: 1643-1660.
doi: 10.1002/mp.17562
pmid: 39641989
|
| [12] |
XU Y, HAN K, ZHOU Y M, et al. Deep adaptive blending network for 3D magnetic resonance image denoising[J]. IEEE J Biomed Health Inform, 2021, 25(9): 3321-3331.
doi: 10.1109/JBHI.2021.3087407
|
| [13] |
DOLZ J, GOPINATH K, YUAN J, et al. HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE Trans Med Imaging, 2018, 38(5): 1116-1126.
doi: 10.1109/TMI.42
|
| [14] |
ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans Image Process, 2017, 26(7): 3142-3155.
doi: 10.1109/TIP.83
|
| [15] |
DOU Q, WANG Z, FENG X, et al. MRI denoising with a non-blind deep complex-valued convolutional neural network[J]. NMR Biomed, 2024, 38(1): e5291.
doi: 10.1002/nbm.v38.1
|
| [16] |
JU R Y, CHEN C C, CHIANG J S, et al. Resolution enhancement processing on low quality images using swin transformer based on interval dense connection strategy[J]. Multimedia Tools Appl, 2023, 83(5): 14839-14855.
doi: 10.1007/s11042-023-16088-0
|
| [17] |
CONG S, ZHOU Y. A review of convolutional neural network architectures and their optimizations[J]. Artif Intell Rev, 2022, 56(3):1905-1969.
doi: 10.1007/s10462-022-10213-5
|
| [18] |
TIAN M, SONG K K. Boosting magnetic resonance image denoising with generative adversarial networks[J]. IEEE Access, 2021: 62266-62275.
|
| [19] |
JIANG D S, DOU W Q, VOSTERS L, et al. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network[J]. Jpn J Radiol, 2018, 36(9): 566-574.
doi: 10.1007/s11604-018-0758-8
pmid: 29982919
|
| [20] |
NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]// MEILA M, ZHANG T. Proceedings of the 38th International Conference on Machine Learning. Cambridge, MA: PMLR, 2021, 139: 8162-8171.
|
| [21] |
CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: a survey[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45(9): 10850-10869.
doi: 10.1109/TPAMI.2023.3261988
|
| [22] |
LI S Y, XIONG H, CHEN Y Z. DiffCharge: Generating EV charging scenarios via a denoising diffusion model[J]. IEEE Trans Smart Grid, 2024, 15(4): 3936-3949.
doi: 10.1109/TSG.2024.3360874
|
| [23] |
MA X, ZOU M, FANG X, et al. Convergent-diffusion denoising model for multi-scenario CT image reconstruction[J]. Comput Med Imaging Graph, 2025, 120: 102491.
doi: 10.1016/j.compmedimag.2024.102491
|
| [24] |
KUANG G, KEITH J, GEORGES F E, et al. PET image denoising based on denoising diffusion probabilistic model[J]. Eur J Nucl Med Mol Imaging, 2023, 51(2): 358-368.
doi: 10.1007/s00259-023-06417-8
|
| [25] |
CHEN X M, ZHAO X C, SUN X P, et al. Study on the automatic accumulation-thawing device of hyperpolarized 129Xe[J]. Chinese J Magn Reson, 2022, 39(3): 316-326.
|
|
陈小明, 赵修超, 孙献平, 等. 超极化 129Xe自动收集-升华装置研究[J]. 波谱学杂志, 2022, 39(3): 316-326.
doi: 10.11938/cjmr20222998
|
| [26] |
CHEN Q, LI H D, FANG Y, et al. Association of 129Xe ventilation functional MRI with pulmonary lesion types[J]. Chinese J Magn Reson, 2024, 41(3): 276-285.
|
|
陈琪, 李海东, 方媛, 等. 129Xe通气功能MRI与肺部病灶类型关联研究[J]. 波谱学杂志, 2024, 41(3): 276-285.
doi: 10.11938/cjmr20243103
|
| [27] |
LI Z M, XIAO S, WANG C, et al. Complementation-reinforced network for integrated reconstruction and segmentation of pulmonary gas MRI with high acceleration[J]. Med Phys, 2023, 51(1): 378-393.
doi: 10.1002/mp.16591
pmid: 37401205
|
| [28] |
ZHOU W, CONRAD A B, RAHIM H S, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612.
doi: 10.1109/TIP.2003.819861
|
| [29] |
LI Z M, XIAO S, WANG C, et al. Encoding enhanced complex CNN for accurate and highly accelerated MRI[J]. IEEE Trans Med Imaging, 2024, 43(5): 1828-1840.
doi: 10.1109/TMI.2024.3351211
|
| [30] |
TAHIR A B, BRAGG M C, WILD M J, et al. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning[J]. Phys Med Biol, 2017, 62(17): 7114-7130.
doi: 10.1088/1361-6560/aa8074
pmid: 28800298
|
| [31] |
CHITWAN S, JONATHAN H, WILLIAM C, et al. Image super-resolution via iterative refinement[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 45(4): 4713-4726.
|