波谱学杂志

• •    

胰腺自动分割与区域定量及糖尿病评估研究

李英豪1,2,王丽辉3,王苏成1,朱中旗1,黄长栋1,李仁峰3,曹开明3,胡海洋3,贾一鸣3,梁松涛3,杨光1,2§,路青3#,汪红志1,2*   

  • 收稿日期:2025-03-27 修回日期:2025-04-22 出版日期:2025-04-23 在线发表日期:2025-04-23
  • 通讯作者: 杨光 ;路青;汪红志 E-mail:gyang@phy.ecnu.edu.cn;Drluqingsjtu@163.com;hzwang@phy.ecnu.edu.cn

Study on Pancreas Automatic Segmentation, Regional Quantification, and Diabetes Assessment

Li Yinghao1,2,Wang Lihui3,Wang Sucheng1,Zhu Zhongqi1,Huang Changdong1,Li Renfeng3,Cao Kaiming3,Hu Haiyang3,Jia Yiming3,Liang Songtao3,Yang Guang1,2§,Lu Qing3#,Wang Hongzhi1,2*   

  • Received:2025-03-27 Revised:2025-04-22 Published:2025-04-23 Online:2025-04-23
  • Contact: Yang Guang;Lu Qing;Wang Hongzhi E-mail:gyang@phy.ecnu.edu.cn;Drluqingsjtu@163.com;hzwang@phy.ecnu.edu.cn

摘要: 胰腺健康与糖尿病等疾病密切相关,准确检测胰腺脂肪含量对疾病的早期诊断和干预具有重要意义.本文提出了一种基于深度学习的胰腺自动分割与脂肪定量方法.首先,使用nnU-Net训练分割模型,实现对m-Dixon 序列中胰腺整体的高精度分割,测试集DSC系数(Dice similarity coefficient, DSC)达0.92.随后,提出一种自动分区与脂肪定量评估方法,实现胰腺头、体、尾的精准划分,并定量分析其体积及脂肪含量.基于256例受试者的研究结果表明,胰腺尾部脂肪含量与2型糖尿病显著相关(p < 0.05).进一步利用随机森林分类模型进行糖尿病风险预测,其中基于尾部脂肪含量的分类曲线线下面积(Area Under the Curve, AUC)为0.68,而结合多区域脂肪信息构建的复合脂肪含量的分类AUC达0.73.研究结果表明,该方法可为糖尿病的早期诊断提供有效的技术支持.

关键词: 磁共振成像, 二型糖尿病预测, 深度学习, 胰腺, nnU-Net

Abstract: Pancreatic health is closely linked to diabetes, making accurate fat quantification crucial for early diagnosis. This study proposes a deep learning-based method for automatic pancreatic segmentation and fat quantification. The nnU-Net model achieves high-precision segmentation on m-Dixon Imaging [Dice similarity coefficient (DSC) is 0.92]. A novel sub-region partitioning and quantification method enables precise delineation of the pancreatic head, body, and tail. Analysis of 256 subjects (healthy, prediabetic, diabetic) reveals a significant association between pancreatic tail fat and type 2 diabetes (p < 0.05). Using random forest classifiers, tail fat content [Area under the curve (AUC) is 0.68] and a composite fat index (AUC = 0.73) effectively predict diabetes risk. This method offers a promising tool for early diagnosis.

Key words: Magnetic Resonance Imaging, Type 2 Diabetes Prediction, Deep Learning, Pancreas, nnU-Net