| [1] |
ONG K L, STAFFORD L K, MCLAUGHLIN S A, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2023, 402(10397): 203-234.
doi: 10.1016/S0140-6736(23)01301-6
pmid: 37356446
|
| [2] |
TURNER C D, BAGNARA J T. General endocrinology[M]. 6th ed. Philadelphia: W. B. Saunders Company, 1976.
|
| [3] |
TAYLOR R. Understanding the cause of type 2 diabetes[J]. Lancet Diabetes Endocrinol, 2024, 12(9): 664-673.
doi: 10.1016/S2213-8587(24)00157-8
|
| [4] |
WANG X, MISAWA R, ZIELINSKI M C, et al. Regional differences in islet distribution in the human pancreas-preferential beta-cell loss in the head region in patients with type 2 diabetes[J]. PloS one, 2013, 8(6): e67454.
doi: 10.1371/journal.pone.0067454
|
| [5] |
SARMA M K, SAUCEDO A, DARWIN C H, et al. Noninvasive assessment of abdominal adipose tissues and quantification of hepatic and pancreatic fat fractions in type 2 diabetes mellitus[J]. Magn Reson Imaging, 2020, 72: 95-102.
doi: S0730-725X(20)30326-X
pmid: 32668273
|
| [6] |
NADARAJAH C, FANANAPAZIR G, CUI E, et al. Association of pancreatic fat content with type II diabetes mellitus[J]. Clin Radiol, 2020, 75(1): 51-56.
doi: S0009-9260(19)30269-7
pmid: 31711639
|
| [7] |
GO VLW, DIMAGNO E P, GARDNER J D, et al. The Pancreas: An Integrated Textbook of Basic Science, Medicine, and Surgery[M]. 2nd ed. Hoboken: Blackwell Publishing, 2004.
|
| [8] |
SHEN J, BAUM T, CORDES C, et al. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: application to weight-loss in obesity[J]. Eur J Radiol, 2016, 85(9): 1613-1621.
doi: 10.1016/j.ejrad.2016.06.006
pmid: 27501897
|
| [9] |
WOLZ R, CHU C, MISAWA K, et al. Automated abdominal multi-organ segmentation with subject-specific atlas generation[J]. IEEE Trans Med Imaging, 2013, 32(9): 1723-1730.
doi: 10.1109/TMI.2013.2265805
|
| [10] |
CHU C, ODA M, KITASAKAI T, et al. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013: 16th International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II 16. Springer Berlin Heidelberg, 2013: 165-172.
|
| [11] |
SAITO A, NAWANO S, SHIMIZU A. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs[J]. Med Image Anal, 2016, 28: 46-65.
doi: 10.1016/j.media.2015.11.003
pmid: 26716720
|
| [12] |
王鑫. 基于统计模型的胰腺分割算法的研究与实现[D]. 沈阳: 东北大学, 2013.
|
| [13] |
DAI J L, HE C, WU J, et al. Pancreatic cystic neoplasms segmentation network combining dual decoding and global attention upsampling modules[J]. Chinese J Magn Reson, 2024, 41(2): 151-161.
|
|
戴俊龙, 何聪, 武杰, 等. 融合双解码和全局注意力上采样模块的胰腺囊性肿瘤分割网络[J]. 波谱学杂志, 2024, 41(2): 151-161.
doi: 10.11938/cjmr20233073
|
| [14] |
CHEN L, WAN L. CTUNet: automatic pancreas segmentation using a channel-wise transformer and 3D U-Net[J]. Vis Comput, 2023, 39(11): 5229-5243.
doi: 10.1007/s00371-022-02656-2
|
| [15] |
PAITHANE P, KAKARWA S. LMNS-Net: Lightweight multiscale novel semantic-net deep learning approach used for automatic pancreas image segmentation in CT scan images[J]. Expert Syst Appl, 2023, 234: 121064.
doi: 10.1016/j.eswa.2023.121064
|
| [16] |
GHORPADE H, JAGTA J, PATIL S, et al. Automatic segmentation of pancreas and pancreatic tumor: a review of a decade of research[J]. IEEE Access, 2023, 11: 108727-108745.
doi: 10.1109/ACCESS.2023.3320570
|
| [17] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nat Methods, 2021, 18(2): 203-211.
doi: 10.1038/s41592-020-01008-z
pmid: 33288961
|
| [18] |
SULOCHANA S, SIVAKAMI T. A gross morphological study of the pancreas in human cadavers[J]. Natl J Clin Anat, 2012, 1(2): 55-60.
doi: 10.4103/2277-4025.298007
|
| [19] |
KUKU G M, HITTATIYA K, SPRINKART A M, et al. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis[J]. Eur Radiol, 2015, 25: 2869-2879.
doi: 10.1007/s00330-015-3703-6
pmid: 25903702
|
| [20] |
FEDOROV A, BEICHEL R, KALPATHY-CRAMER J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network[J]. Magn Reson Imaging, 2012, 30(9): 1323-1341.
doi: 10.1016/j.mri.2012.05.001
pmid: 22770690
|
| [21] |
BI X L, LU M, XIAO B, et al. Pancreas segmentation based on dual-decoder U-Net convolutional neural network[J]. J Softw, 2022, 33(5): 1947-1958.
|
|
毕秀丽, 陆猛, 肖斌, 等. 基于双解码U型卷积神经网络的胰腺分割[J]. 软件学报, 2022, 33(5): 1947-1958.
|
| [22] |
ZHANG Z, KELES E, DURAK G, et al. Large-scale multi-center CT and MRI segmentation of pancreas with deep learning[J]. Med Image Anal, 2025, 99: 103382.
doi: 10.1016/j.media.2024.103382
|
| [23] |
QU T, LI X, WANG X, et al. Transformer guided progressive fusion network for 3D pancreas and pancreatic mass segmentation[J]. Med Image Anal, 2023, 86: 102801.
doi: 10.1016/j.media.2023.102801
|
| [24] |
CHEN J, CHEN W, ZHU Z, et al. MAFE-Net: A multi-level attention feature extraction network for pancreas segmentation[J]. J Mach Learn, 2024,10: 1-19.
|
| [25] |
SKUDDE-HILL L, SEQUEIRA I R, CHO J, et al. Fat distribution within the pancreas according to diabetes status and insulin traits[J]. Diabetes, 2022, 71(6): 1182-1192.
doi: 10.2337/db21-0976
|