沈伊民1*,郑伟丽1,CHENG Yu-Chung N1,丁玉川2,HIGASHIDA Tetsuhiro2,李 杰2,叶永泉1,RAYNAUD Jean-Sebastien3,HAACKE E Mark1,4
收稿日期:
2013-10-16
修回日期:
2013-11-12
出版日期:
2014-03-05
在线发表日期:
2014-03-05
作者简介:
SHEN Yi-min(1961-), male, born in Jiangsu, PhD., his research focuses on MRI, Tel.: +01-313-966-0579, fax:+01-313-745-9182. E-mail: ym_shen@wayne.edu. *通讯联系人:沈伊民.
基金资助:
Heart and Stroke Foundation of Canada (HSFC), Synchrotron Medical Imaging Team Grant (# CIF 99472).
SHEN Yi-min1*,ZHENG Wei-li1,CHENG Yu-chung N1,DING Yu-chuan2,HIGASHIDA Tetsuhiro2,LI Jie2,YE Yong-quan1,RAYNAUD Jean-Sebastien3,HAACKE E Mark1,4
Received:
2013-10-16
Revised:
2013-11-12
Published:
2014-03-05
Online:
2014-03-05
About author:
SHEN Yi-min(1961-), male, born in Jiangsu, PhD., his research focuses on MRI, Tel.: +01-313-966-0579, fax:+01-313-745-9182. E-mail: ym_shen@wayne.edu. *Corresponding author
Supported by:
Heart and Stroke Foundation of Canada (HSFC), Synchrotron Medical Imaging Team Grant (# CIF 99472).
摘要:
现今诱导血管增生剂在中风后的治疗效应引起了人们的关注.这项工作的一个目的是用短时脑中动脉栓塞大鼠中风模型(MCAO)和磁化率加权成像(SWI)的核磁共振成像(MRI)方法,监测在中风后半月形损伤区新生成的旁侧血管.P904 是法国格尔伯实验室生产的超小超顺磁氧化铁粒子弛豫试剂(USPIO).它在低剂量减少T1 弛豫时间,适中剂量时减少T2*弛豫时间.实验动物被随机分为3 组:中风Sildenafil 治疗组(n=6)、中风无治疗对照组(n=5)和无中风无治疗对照组(n=1).在P904 注入前后分别进行MRI成像.磁化率加权成像的时间点是:栓塞手术前、栓塞手术后24 小时、栓塞手术后两周和四周.结果表明,术后两周,在治疗组中中风严重的动物的缺血区的周边显示了MRI 可见的新生血管.结论:在短时脑中动脉栓塞大鼠中风模型中,使用超小超顺磁氧化铁粒子弛豫试剂和7 T 高分辨磁化率加权成像能够监测半月形损伤区新生血管的形成.
中图分类号:
沈伊民1*,郑伟丽1,CHENG Yu-Chung N1,et al.. 大鼠中风模型的超小氧化铁粒子神经血管成像[J]. 波谱学杂志.
SHEN Yi-min1*,ZHENG Wei-li1,CHENG Yu-chung N1,DING Yu-chuan2,HIGASHIDA Tetsuhiro2,LI Jie2,YE Yong-quan1,RAYNAUD Jean-Sebastien3,HAACKE E Mark1,4.
[1] Jiang Q, Zhang Z, Ding G, et al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI[J]. Neuroimage, 2005, 28: 698-707. [2] Ding G, Jiang Q, Li L, et al. Angiogenesis detected after embolic stroke in rat brain using magnetic resonance T2*WI[J]. Stroke, 2008, 39: 1 563-1 568. [3] Haacke E M, Xu Y, Cheng Y C, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med, 2004, 52: 612-618. [4] Haacke E M, Tang J, Neelavalli J, et al. Susceptibility mapping as a Means to visualize veins and quantify oxygen saturation[J]. J Magn Reson Imaging, 2010, 32: 663-676. [5] Ding Y, Zhou Y, Lai Q, et al. Impaired motor activity and motor learning function in rat withmiddle cerebral artery occlusion[J]. Behavioural Brain Research, 2002, 132: 29-36. [6] Hunter A J, Green A R, Cross A J. Animal models of acute ischaemic stroke: can they predict clinically successful neuroprotective drugs? [J]. Trends Pharmacol Sci, 1995, 16: 123-128. [7] Mohr J P, Gautier J C, Hier D, Stein R W. Middle cerebral artery//Barnett HJM, Stein B M, Mohr J P, Yatsu F M. Editor Stroke: Pathophysiology, Diagnosis and Management. Volume 1[M]. New York: Churchill Livingstone, 1986. 377-450. [8] Saito I, Segawa H, Shiokawa Y, et al. Middle cerebral artery occlusion: correlation of computed tomography and angiography with clinical outcome[J]. Stroke, 1987, 18: 863-868. [9] Koizumi J, Nakazawa T. Reperfusable brain infarction model in rat (abstratct). Proceedings of the 10th Meeting of the Japanese Stoke Society[C]. Kyoto, 1985. 4-18. [10] Longa E Z, Weinstein P R, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20: 84-91. [11] Meier R, Henning T D, Boddington S, et al. Breast cancers: MR imaging of Folate-Receptor expression with the folate-specific nanoparticle P1133[J]. Radiology, 2010, 255(2): 527-535. [12] Kinner S, Maderwald S, Parohl N, et al. Contrast-enhanced magnetic resonance angiography in rabbits: Evaluation of the gadolinium-based agent P846 and the iron-based blood pool agent P904 in comparison with gadoterate meglumine[J]. Invest Radiol, 2011, 46: 524-529. [13] Cunningham C H, Arai T, Yang P C, et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles[J]. Magn Reson Med, 2005, 53: 999-1 005. [14] Schroeter M, Jander S, Huitinga I, et al. Phagocytic response in photochemically induced infarction of rat cerebral cortex[J]. Stroke, 1997, 28: 382-386. [15] Schroeter M, Jander S, Witte O, et al. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion[J]. J Neuroimmunol, 1994, 55: 195-203. [16] Rausch M, Sauter A, Frohlich J, et al. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage[J]. Magn Reson Med, 2001, 46: 1 018-1 022. [17] Rausch M, Baumann D, Neubacher U, et al. In vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO[J]. NMR Biomed, 2002, 15: 278-283. [18] Sbarbati A, Reggiani A, Nicolato E, et al. Correlation MRI/ultrastructure in cerebral ischemic lesions: application to the interpretation of cortical layered areas[J]. Magn Reson Imaging, 2002, 20: 479-486. [19] Schroeter M, Franke C, Stoll G, et al. Dynamic changes of magnetic resonance imaging abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain[J]. Acta Neuropathol, 2001, 101: 114-122. [20] Kleinschnitz C, Bendzus M, Frank M, et al. In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging[J]. J Cereb Blood Flow Metab, 2003, 23: 1 356-1 361. [21] Saleh A, Wiedermann D, Schroeter M, et al. Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging[J]. NMR Biomed, 2004, 17: 163-169. [22] Schroeter M, Saleh A, Wiedermann D, et al. Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia[J]. Magn Reson Med, 2004, 52: 403-406. [23] Weber R, Wegener S, Ramos-Cabrer P, et al. MRI detection of macrophage activity after experimental stroke in rats: new indicators for late appearance of vascular degradation?[J]. Magn Reson Med, 2005, 54: 59-66. [24] Dousset V, Gomez C, Petry K G, et al. Dose and scanning delay using USPIO for central nervous system macrophage imaging[J]. MAGMA, 1999, 8: 185-189. [25] Zhang X D. Magnetic resonance imaging of non-human primate ischemic stroke models[J]. Chinese J Magn Reson, 2010, 27 (4): 548-561. |
[1] | 刘颖, 袁斌华, 章浩伟. 便携式磁共振多源射频脉冲发生器设计[J]. 波谱学杂志, 2025, 42(3): 285-298. |
[2] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
[3] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
[4] | 江超超, 姚守权, 徐俊成, 蒋瑜. 宽频磁共振微线圈设计[J]. 波谱学杂志, 2025, 42(3): 299-307. |
[5] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
[6] | 隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248. |
[7] | 李科言, 程鑫, 陈俊飞, 曹丽, 黄臻, 刘朝阳. 用于低场NMR的低噪声前置放大器研制[J]. 波谱学杂志, 2025, 42(3): 321-333. |
[8] | 汤世豪, 杨谨毓, 徐雅洁, 王亚, 彭博文, 高宇昊, 杨晓冬. 一种用于低场磁共振波谱仪的圆极化线圈设计[J]. 波谱学杂志, 2025, 42(3): 308-320. |
[9] | 何丰丞 李明道 吕兴龙 姚守权 蒋瑜. 掌上型核磁共振谱仪控制台软件设计[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 郑佳琪 王意浓 元思文 尹田鹏. 4-异丙氧基-1-(三氟乙酰基)萘的结构解析和NMR数据完整归属[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 曹飞, 徐芊芊, 陈浩, 祖洁, 李晓文, 田锦, 鲍磊. 基于交叉自监督和DWI的NIID智能诊断方法[J]. 波谱学杂志, 2025, 42(2): 154-163. |
[12] | 陈博, 刘泉, 马蕾, 陈淑年, 贾亚琦, 朱斌, 郭俊旺. 基于Simulink的连续波电子顺磁共振信号处理与检测仿真研究[J]. 波谱学杂志, 2025, 42(2): 174-183. |
[13] | 顾佳佳, 王远军. 混合注意力和多尺度模块的阿尔茨海默病分类方法[J]. 波谱学杂志, 2025, 42(2): 103-116. |
[14] | 左冰玉, 石丽莉, 宋佳, 赵阳, 李倩. 雌激素、肿瘤标志物联合DCE-MRI在宫颈癌诊断及临床分期中的应用[J]. 波谱学杂志, 2025, 42(2): 164-173. |
[15] | 孟靖欣, 王远军. 基于扩散磁共振的大脑浅表白质纤维束研究进展[J]. 波谱学杂志, 2025, 42(2): 205-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||