波谱学杂志 ›› 2022, Vol. 39 ›› Issue (1): 20-32.doi: 10.11938/cjmr20212912
收稿日期:
2021-04-26
出版日期:
2022-03-05
在线发表日期:
2021-05-17
通讯作者:
李雪松
E-mail:lixuesong@bit.edu.cn
基金资助:
Yan-yan LI1,Lv LI2,Xue-song LI1,*(),Hua GUO2
Received:
2021-04-26
Published:
2022-03-05
Online:
2021-05-17
Contact:
Xue-song LI
E-mail:lixuesong@bit.edu.cn
摘要:
高欠采倍数的动态磁共振图像重建具有重要意义,是同时实现高时间分辨率和高空间分辨率动态对比度增强成像的重要环节.本研究提出一种结合黄金角变密度螺旋采样、并行成像和基于同伦l0范数最小化的压缩感知的图像重建的三维动态磁共振成像方法.黄金角变密度螺旋采样轨迹被用来连续获取k空间数据,具有数据采集效率高、对运动不敏感等优点.在重建算法中,将多线圈稀疏约束应用于时间总变分域,使用基于l0范数最小化的非线性重建算法代替传统的l1范数最小化算法,进一步提高了欠采样率.仿真实验和在体实验表明本文所提的方法在保持图像质量的同时,也可以实现较高的空间分辨率和时间分辨率,初步验证了基于同伦l0范数最小化重建在三维动态磁共振成像上的优势和临床价值.
中图分类号:
李嫣嫣,李律,李雪松,郭华. 基于同伦l0范数最小化重建的三维动态磁共振成像[J]. 波谱学杂志, 2022, 39(1): 20-32.
Yan-yan LI,Lv LI,Xue-song LI,Hua GUO. 3D Dynamic MRI with Homotopic l0 Minimization Reconstruction[J]. Chinese Journal of Magnetic Resonance, 2022, 39(1): 20-32.
表1
基于同伦l0最小化的算法实现
目标函数: |
输入:F –非均匀快速傅里叶变换算子 S –线圈敏感度图 m – k空间测量数据 |
输出:d –目标函数的数值近似解 |
初始化: |
迭代:while |
while |
使用共轭梯度法求解 end |
end |
1 |
LIU J , SPINCEMAILLE P , CODELLA N C , et al. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition[J]. Magn Reson Med, 2010, 63 (5): 1230- 1237.
doi: 10.1002/mrm.22306 |
2 |
OTAZO R . Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI[J]. Magn Reson Med, 2010, 64 (3): 767- 776.
doi: 10.1002/mrm.22463 |
3 |
WRIGHT K L , CHEN Y , SAYBASILI H , et al. Quantitative high-resolution renal perfusion imaging using 3-dimensional through-time radial generalized autocalibrating partially parallel acquisition[J]. Invest Radiol, 2014, 49 (10): 666- 674.
doi: 10.1097/RLI.0000000000000070 |
4 |
BO X , SPINCEMAILLE P , CHEN G , et al. Fast 3D contrast enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction[J]. Magn Reson Med, 2013, 69 (2): 370- 381.
doi: 10.1002/mrm.24253 |
5 |
CHENG J Y , TAO Z , RUANGWATTANAPAISARN N , et al. Free-breathing pediatric MRI with nonrigid motion correction and acceleration[J]. J Magn Reson Imaging, 2015, 42 (2): 407- 420.
doi: 10.1002/jmri.24785 |
6 |
FENG L , GRIMM R , BLOCK K T , et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI[J]. Magn Reson Med, 2014, 72 (3): 707- 717.
doi: 10.1002/mrm.24980 |
7 |
FENG L , AXEL L , CHANDARANA H , et al. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing[J]. Magn Reson Med, 2016, 75 (2): 775- 788.
doi: 10.1002/mrm.25665 |
8 |
PRINCE M R , YUCEL E K , KAUFMAN J A , et al. Dynamic gadolinium-enhanced 3DFT abdominal MR arteriography[J]. J Magn Reson Imaging, 1993, 3 (6): 877- 881.
doi: 10.1002/jmri.1880030614 |
9 |
ROFSKY N M , LEE V S , LAUB G , et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination[J]. Radiology, 1999, 212 (3): 876- 884.
doi: 10.1148/radiology.212.3.r99se34876 |
10 |
HAGIWARA M , RUSINEK H , LEE V S , et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging-initial experience[J]. Radiology, 2008, 246 (3): 926- 934.
doi: 10.1148/radiol.2463070077 |
11 |
LEE V S , LAVELLE M T , ROFSKY N M , et al. Hepatic MR imaging with a dynamic contrast-enhanced isotropic volumetric interpolated breath-hold examination: feasibility, reproducibility, and technical quality[J]. Radiology, 2000, 215 (2): 365- 372.
doi: 10.1148/radiology.215.2.r00ma16365 |
12 |
MATERNE R , SMITH A M , PEETERS F , et al. Assessment of hepatic perfusion parameters with dynamic MRI[J]. Magn Reson Med, 2002, 47 (1): 135- 142.
doi: 10.1002/mrm.10045 |
13 | BAXTER S , ZHEN J W , JOE B N , et al. Timing bolus dynamic contrast-enhanced (DCE) MRI assessment of hepatic perfusion: Initial experience[J]. J Magn Reson Imaging, 2010, 29 (6): 1317- 1322. |
14 | HAIDER C R , HU H H , CAMPEAU N G , et al. 3D high temporal and spatial resolution contrast-enhanced MR angiography of the whole brain[J]. Magn Reson Med, 2010, 60 (3): 749- 760. |
15 |
PRUESSMANN K P , WEIGER M , SCHEIDEGGER M B , et al. SENSE: sensitivity encoding for fast MRI[J]. Magn Reson Med, 1999, 42 (5): 952- 962.
doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S |
16 |
GRISWOLD M A , JAKOB P M , HEIDEMANN R M , et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002, 47 (6): 1202- 1210.
doi: 10.1002/mrm.10171 |
17 |
TSAO J , BOESIGER P , PRUESSMANN K P . k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations[J]. Magn Reson Med, 2003, 50 (5): 1031- 1042.
doi: 10.1002/mrm.10611 |
18 |
HUANG F , AKAO J , VIJAYAKUMAR S , et al. k-t GRAPPA: A k-space implementation for dynamic MRI with high reduction factor[J]. Magn Reson Med, 2005, 54 (5): 1172- 1184.
doi: 10.1002/mrm.20641 |
19 |
LUSTIG M , DONOHO D L , SANTOS J M , et al. Compressed sensing MRI[J]. IEEE Signal Proc Mag, 2008, 25 (2): 72- 82.
doi: 10.1109/MSP.2007.914728 |
20 |
LUSTIG M , DONOHO D L , PAULY J M . Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn Reson Med, 2007, 58 (6): 1182- 1195.
doi: 10.1002/mrm.21391 |
21 |
KIM Y C , NARAYANAN S S , NAYAK K S . Flexible retrospective selection of temporal resolution in real-time speech MRI using a golden-ratio spiral view order[J]. Magn Reson Med, 2011, 65 (5): 1365- 1371.
doi: 10.1002/mrm.22714 |
22 |
TRZASKO J , MANDUCA A . Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization[J]. IEEE T Med Imaging, 2009, 28 (1): 106- 121.
doi: 10.1109/TMI.2008.927346 |
23 |
WONG A , MISHRA A , FIEGUTH P , et al. Sparse reconstruction of breast MRI using homotopic l0 minimization in a regional sparsified domain[J]. IEEE T Biomed Eng, 2013, 60 (3): 743- 752.
doi: 10.1109/TBME.2010.2089456 |
24 |
MEYER C H , HU B S , NISHIMURA D G , et al. Fast spiral coronary artery imaging[J]. Magn Reson Med, 1992, 28 (2): 202- 213.
doi: 10.1002/mrm.1910280204 |
25 | PRUESSMANN K P, WEIGER M, BORNERT P, et al. A gridding approach for sensitivity encoding with arbitrary trajectories[C]. In: Proc ISMRM 8th Annual Meeting, Denver, 2000, 276. |
26 |
WINKELMANN S , SCHAEFFTER T , KOEHLER T , et al. An optimal radial profile order based on the golden ratio for time-resolved MRI[J]. IEEE T Med Imaging, 2007, 26 (1): 68- 76.
doi: 10.1109/TMI.2006.885337 |
27 |
LIU Q G , WANG S S , YANG K , et al. Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating[J]. IEEE T Med Imaging, 2013, 32 (7): 1290- 301.
doi: 10.1109/TMI.2013.2256464 |
28 |
LIU Q G , WANG S S , YING L , et al. Adaptive dictionary learning in sparse gradient domain for image recovery[J]. IEEE T mage Procss, 2013, 22 (12): 4652- 4663.
doi: 10.1109/TIP.2013.2277798 |
29 |
ZHANG Z Y , QU X B , LIN Y Q , et al. A sparse reconstruction algorithm for NMR spectroscopy based on approximate l0 norm minimization[J]. Chinese J Magn Reson, 2013, 30 (4): 528- 540.
doi: 10.3969/j.issn.1000-4556.2013.04.006 |
张正炎, 屈小波, 林雁勤, 等. 基于近似l0范数最小化的NMR波谱稀疏重建算法[J]. 波谱学杂志, 2013, 30 (4): 528- 540.
doi: 10.3969/j.issn.1000-4556.2013.04.006 |
|
30 | HUBER P J. Robust Statistics[M]. Wiley-Interscience, 1981. |
31 | LI L , ZHOU Z C , YUAN C , et al. Imaging lenticulostriate arteries at 3 Tesla using optimized flow-sensitive black-blood technique[J]. Chinese J Magn Reson, 2016, 33 (4): 528- 538. |
李律, 周赜辰, 苑纯, 等. 基于优化后流动敏感黑血序列的豆纹动脉3 T磁共振成像[J]. 波谱学杂志, 2016, 33 (4): 528- 538. | |
32 |
STONE S S , HALDAR J P , TSAO S C , et al. Accelerating advanced MRI Reconstructions on GPUs[J]. J Parallel Distr Com, 2008, 68 (10): 1307- 1318.
doi: 10.1016/j.jpdc.2008.05.013 |
33 | CHENG H T , WANG S S , KE Z W , et al. A deep recursive cascaded convolutional network for parallel MRI[J]. Chinese J Magn Reson, 2019, 36 (4): 437- 445. |
程慧涛, 王珊珊, 柯子文, 等. 基于深度递归级联卷积神经网络的并行磁共振成像方法[J]. 波谱学杂志, 2019, 36 (4): 437- 445. | |
34 | WANG W T , SU S , JIA S , et al. Reconstruction of simultaneous multi-slice MRI data by combining virtual conjugate coil technology and convolutional neural network[J]. Chinese J Magn Reson, 2020, 37 (4): 8- 22. |
王婉婷, 苏适, 贾森, 等. 基于虚拟线圈和卷积神经网络的多层同时激发图像重建[J]. 波谱学杂志, 2020, 37 (4): 8- 22. |
[1] | 刘颖, 袁斌华, 章浩伟. 便携式磁共振多源射频脉冲发生器设计[J]. 波谱学杂志, 2025, 42(3): 285-298. |
[2] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
[3] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
[4] | 江超超, 姚守权, 徐俊成, 蒋瑜. 宽频磁共振微线圈设计[J]. 波谱学杂志, 2025, 42(3): 299-307. |
[5] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
[6] | 隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248. |
[7] | 李科言, 程鑫, 陈俊飞, 曹丽, 黄臻, 刘朝阳. 用于低场NMR的低噪声前置放大器研制[J]. 波谱学杂志, 2025, 42(3): 321-333. |
[8] | 汤世豪, 杨谨毓, 徐雅洁, 王亚, 彭博文, 高宇昊, 杨晓冬. 一种用于低场磁共振波谱仪的圆极化线圈设计[J]. 波谱学杂志, 2025, 42(3): 308-320. |
[9] | 何丰丞 李明道 吕兴龙 姚守权 蒋瑜. 掌上型核磁共振谱仪控制台软件设计[J]. 波谱学杂志, 0, (): 0-0. |
[10] | 郑佳琪 王意浓 元思文 尹田鹏. 4-异丙氧基-1-(三氟乙酰基)萘的结构解析和NMR数据完整归属[J]. 波谱学杂志, 0, (): 0-0. |
[11] | 曹飞, 徐芊芊, 陈浩, 祖洁, 李晓文, 田锦, 鲍磊. 基于交叉自监督和DWI的NIID智能诊断方法[J]. 波谱学杂志, 2025, 42(2): 154-163. |
[12] | 孙灏芸, 王丽嘉. 融合注意力机制和空洞卷积的3D ELD_MobileNetV2在肝结节分类中的应用[J]. 波谱学杂志, 2025, 42(2): 130-142. |
[13] | 魏志宏, 孔旭东, 孔燕, 闫士举, 丁阳, 魏贤顶, 孔栋, 杨波. 基于全局和局部特征信息的生成对抗网络在海马体分割中的应用[J]. 波谱学杂志, 2025, 42(2): 143-153. |
[14] | 陈博, 刘泉, 马蕾, 陈淑年, 贾亚琦, 朱斌, 郭俊旺. 基于Simulink的连续波电子顺磁共振信号处理与检测仿真研究[J]. 波谱学杂志, 2025, 42(2): 174-183. |
[15] | 顾佳佳, 王远军. 混合注意力和多尺度模块的阿尔茨海默病分类方法[J]. 波谱学杂志, 2025, 42(2): 103-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||