波谱学杂志 ›› 2025, Vol. 42 ›› Issue (4): 402-413.doi: 10.11938/cjmr20253156cstr: 32225.14.cjmr20253156
文玉林1,2, 李改英1,2,*(
), 武玉朋1,2, 李建奇1,2
收稿日期:2025-04-02
出版日期:2025-12-05
在线发表日期:2025-05-12
通讯作者:
* Tel: 021-62233775, E-mail: ligaiying@phy.ecnu.edu.cn.
基金资助:
WEN Yulin1,2, LI Gaiying1,2,*(
), WU Yupeng1,2, LI Jianqi1,2
Received:2025-04-02
Published:2025-12-05
Online:2025-05-12
Contact:
* Tel: 021-62233775, E-mail: ligaiying@phy.ecnu.edu.cn.
摘要:
扩散加权磁共振波谱(DW-MRS)可用于测量代谢物表观扩散系数(ADC),从而特异性地表征细胞微结构特性. 然而,生理运动伪影和较低的测量重复性限制了其临床应用. 本文探究了不同门控方法和循环模式对DW-MRS结果的影响. 研究共纳入21名健康受试者,其中6名分别采用心电门控、呼吸门控和无门控策略对辐射冠及后扣带回皮层区域进行扫描,对比信号衰减情况;另15名分别使用b值内循环与外循环模式进行扫描,评估循环模式对ADC测量可重复性的影响. 结果表明,心电门控可显著抑制生理运动伪影并降低ADC高估现象,且在辐射冠区域效果尤为明显,而呼吸门控的改善作用相对有限. 此外,b值内循环可提升ADC可重复性. 因此,结合心电门控与b值内循环技术可有效降低运动伪影,提高ADC可靠性,为DW-MRS临床应用提供技术支持.
中图分类号:
文玉林, 李改英, 武玉朋, 李建奇. 扩散加权磁共振波谱采集策略优化:门控及循环模式影响[J]. 波谱学杂志, 2025, 42(4): 402-413.
WEN Yulin, LI Gaiying, WU Yupeng, LI Jianqi. Optimization of DW-MRS Acquisition Protocol: The Impact of Gating and Cycling Modes[J]. Chinese Journal of Magnetic Resonance, 2025, 42(4): 402-413.
表1
辐射冠区域不同门控条件下的表观扩散系数对比及线性混合效应模型分析结果
| ADC/(μm2/ms) | P12 | P13 | P23 | ||||
|---|---|---|---|---|---|---|---|
| Cardiac gating | Respiratory gating | No gating | |||||
| tCho | LR | 0.144 ± 0.043 | 0.147 ± 0.017 | 0.164 ± 0.030 | 0.850 | 0.287 | 0.377 |
| AP | 0.116 ± 0.030 | 0.118 ± 0.026 | 0.135 ± 0.016 | 0.842 | 0.073 | 0.105 | |
| HF | 0.134 ± 0.013 | 0.152 ± 0.027 | 0.178 ± 0.036 | 0.193 | 0.005** | 0.077 | |
| mean | 0.131 ± 0.023 | 0.139 ± 0.018 | 0.159 ± 0.025 | 0.477 | 0.023* | 0.091 | |
| tCr | LR | 0.166 ± 0.045 | 0.191 ± 0.023 | 0.193 ± 0.034 | 0.151 | 0.204 | 0.858 |
| AP | 0.141 ± 0.026 | 0.167 ± 0.024 | 0.170 ± 0.020 | 0.072 | 0.049* | 0.839 | |
| HF | 0.162 ± 0.018 | 0.185 ± 0.015 | 0.195 ± 0.026 | 0.059 | 0.012* | 0.428 | |
| mean | 0.156 ± 0.025 | 0.181 ± 0.012 | 0.186 ± 0.024 | 0.044* | 0.028* | 0.817 | |
| tNAA | LR | 0.171 ± 0.041 | 0.186 ± 0.017 | 0.200 ± 0.038 | 0.432 | 0.125 | 0.427 |
| AP | 0.161 ± 0.020 | 0.179 ± 0.027 | 0.182 ± 0.023 | 0.076 | 0.046* | 0.794 | |
| HF | 0.153 ± 0.020 | 0.171 ± 0.016 | 0.193 ± 0.027 | 0.054 | <0.001*** | 0.016* | |
| mean | 0.162 ± 0.018 | 0.178 ± 0.013 | 0.192 ± 0.022 | 0.081 | 0.004** | 0.157 | |
表2
后扣带回皮层区域不同门控条件下的表观扩散系数对比及线性混合效应模型分析结果
| ADC/(μm2/ms) | P12 | P13 | P23 | ||||
|---|---|---|---|---|---|---|---|
| Cardiac gating | Respiratory gating | No gating | |||||
| tCho | LR | 0.106 ± 0.024 | 0.112 ± 0.020 | 0.111 ± 0.023 | 0.674 | 0.721 | 0.949 |
| AP | 0.097 ± 0.027 | 0.099 ± 0.011 | 0.108 ± 0.018 | 0.876 | 0.346 | 0.428 | |
| HF | 0.092 ± 0.019 | 0.111 ± 0.023 | 0.111 ± 0.021 | 0.003** | 0.003** | 0.955 | |
| mean | 0.098 ± 0.019 | 0.107 ± 0.014 | 0.110 ± 0.014 | 0.303 | 0.178 | 0.734 | |
| tCr | LR | 0.130 ± 0.017 | 0.151 ± 0.015 | 0.139 ± 0.015 | 0.034* | 0.364 | 0.185 |
| AP | 0.114 ± 0.015 | 0.129 ± 0.013 | 0.131 ± 0.013 | 0.041* | 0.022* | 0.747 | |
| HF | 0.105 ± 0.009 | 0.119 ± 0.014 | 0.127 ± 0.015 | 0.055 | 0.004** | 0.215 | |
| mean | 0.116 ± 0.008 | 0.133 ± 0.012 | 0.132 ± 0.014 | 0.019* | 0.023* | 0.928 | |
| tNAA | LR | 0.144 ± 0.030 | 0.148 ± 0.009 | 0.142 ± 0.012 | 0.750 | 0.826 | 0.592 |
| AP | 0.120 ± 0.016 | 0.125 ± 0.008 | 0.128 ± 0.006 | 0.431 | 0.205 | 0.614 | |
| HF | 0.113 ± 0.013 | 0.124 ± 0.016 | 0.130 ± 0.017 | 0.219 | 0.073 | 0.529 | |
| mean | 0.126 ± 0.018 | 0.132 ± 0.008 | 0.133 ± 0.009 | 0.368 | 0.303 | 0.893 | |
表3
b值内、外循环模式获取的表观扩散系数对比及线性混合效应模型分析结果
| ADC/(μm2/ms) | P values | |||
|---|---|---|---|---|
| Internal b-value cycling | External b-value cycling | |||
| tCho | LR | 0.109 ± 0.014 | 0.109 ± 0.019 | 0.826 |
| AP | 0.112 ± 0.018 | 0.104 ± 0.024 | 0.158 | |
| HF | 0.097 ± 0.016 | 0.099 ± 0.021 | 0.614 | |
| mean | 0.106 ± 0.011 | 0.104 ± 0.018 | 0.601 | |
| tCr | LR | 0.133 ± 0.014 | 0.134 ± 0.019 | 0.680 |
| AP | 0.117 ± 0.016 | 0.120 ± 0.020 | 0.542 | |
| HF | 0.110 ± 0.011 | 0.109 ± 0.014 | 0.749 | |
| mean | 0.120 ± 0.010 | 0.121 ± 0.015 | 0.883 | |
| tNAA | LR | 0.144 ± 0.017 | 0.143 ± 0.021 | 0.806 |
| AP | 0.121 ± 0.008 | 0.122 ± 0.013 | 0.486 | |
| HF | 0.117 ± 0.014 | 0.116 ± 0.016 | 0.637 | |
| mean | 0.127 ± 0.011 | 0.127 ± 0.013 | 0.780 | |
| [1] |
NEGENDANK W. Studies of human tumors by MRS: A review[J]. NMR Biomed, 1992, 5(5): 303-324.
pmid: 1333263 |
| [2] | LI R, CHANG X, ZHANG J, et al. Progress of magnetic resonance spectroscopy in the study of the effects of smoking on the brain[J]. Chinese J Magn Reson, 2023, 40(4): 471-480. |
|
李任, 常晓, 张捷, 等. 磁共振波谱技术在吸烟对大脑影响的研究进展[J]. 波谱学杂志, 2023, 40(4): 471-480.
doi: 10.11938/cjmr20233052 |
|
| [3] | ZHU X W, YANG X, WEI D X, et al. In vivo glutathione molecular MRS signal selection based on nuclear spin singlet states[J]. Chinese J Magn Reson, 2024, 41(4): 373-381. |
|
朱向炜, 杨雪, 魏达秀, 等. 基于核自旋单重态的活体谷胱甘肽分子MRS信号选择[J]. 波谱学杂志, 2024, 41(4): 373-381.
doi: 10.11938/cjmr20243105 |
|
| [4] |
TKÁC I, ÖZ G, ADRIANY G, et al. In vivo1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T[J]. Magn Reson Med, 2009, 62(4): 868-879.
doi: 10.1002/mrm.v62:4 |
| [5] |
NICOLAY K, BRAUN K P J, GRAAF R A D, et al. Diffusion NMR spectroscopy[J]. NMR Biomed, 2001, 14(2): 94-111.
pmid: 11320536 |
| [6] |
CAO P, WU E X. In vivo diffusion MRS investigation of non-water molecules in biological tissues[J]. NMR Biomed, 2017, 30(3): e3481.
doi: 10.1002/nbm.v30.3 |
| [7] |
LIGNEUL C, NAJAC C, DÖRING A, et al. Diffusion-weighted MR spectroscopy: Consensus, recommendations, and resources from acquisition to modeling[J]. Magn Reson Med, 2024, 91(3): 860-885.
doi: 10.1002/mrm.v91.3 |
| [8] |
PALOMBO M, SHEMESH N, RONEN I, et al. Insights into brain microstructure from in vivo DW-MRS[J]. NeuroImage, 2018, 182: 97-116.
doi: S1053-8119(17)30942-4 pmid: 29155183 |
| [9] | SPOTORNO N, NAJAC C, STRANDBERG O, et al. Diffusion weighted magnetic resonance spectroscopy revealed neuronal specific microstructural alterations in Alzheimer's disease[J]. Brain Commun, 2023, 6(1): fcae026. |
| [10] |
GENOVESE G, DIAZ-FERNANDEZ B, LEJEUNE F-X, et al. Longitudinal monitoring of microstructural alterations in cerebral ischemia with in vivo diffusion-weighted MR spectroscopy[J]. Radiology, 2022, 306(3): e220430.
doi: 10.1148/radiol.220430 |
| [11] |
RICIGLIANO V A G, TONIETTO M, PALLADINO R, et al. Thalamic energy dysfunction is associated with thalamo-cortical tract damage in multiple sclerosis: A diffusion spectroscopy study[J]. Mult Scler J, 2021, 27(4): 528-538.
doi: 10.1177/1352458520921362 |
| [12] |
BODINI B, BRANZOLI F, POIRION E, et al. Dysregulation of energy metabolism in multiple sclerosis measured in vivo with diffusion-weighted spectroscopy[J]. Mult Scler J, 2018, 24(3): 313-321.
doi: 10.1177/1352458517698249 |
| [13] |
HENRY-FEUGEAS M C, IDY-PERETTI I, BALEDENT O, et al. Cerebrospinal fluid flow waveforms-MR analysis in chronic adult hydrocephalus[J]. Invest Radiol, 2001, 36(3): 146-154.
doi: 10.1097/00004424-200103000-00003 |
| [14] |
WÅHLIN A, AMBARKI K, HAUKSSON J, et al. Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: Repeatability and physiological interactions[J]. J Magn Reson Imaging, 2012, 35(5): 1055-1062.
doi: 10.1002/jmri.23527 pmid: 22170792 |
| [15] |
GENOVESE G, MARJAŃSKA M, AUERBACH E J, et al. In vivo diffusion-weighted MRS using semi-LASER in the human brain at 3 T: Methodological aspects and clinical feasibility[J]. NMR Biomed, 2021, 34(5): e4206.
doi: 10.1002/nbm.v34.5 |
| [16] |
DAOUK J, BOUZERAR R, BALEDENT O. Heart rate and respiration influence on macroscopic blood and CSF flows[J]. Acta Radiologica, 2017, 58(8): 977-982.
doi: 10.1177/0284185116676655 pmid: 28273732 |
| [17] |
KAN H E, TECHAWIBOONWONG A, VAN OSCH M J, et al. Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T[J]. Magn Reson Med, 2012, 67(5): 1203-1209.
doi: 10.1002/mrm.23129 pmid: 22083562 |
| [18] | ROBERT J O, PETER B K, JUNE S T. WET, a T1-and B1-insensitive water-suppression method for in vivo localized 1H NMR Spectroscopy[J]. J Magn Reson, 1994, 104: 1-10. |
| [19] |
OTA K, NAKAZATO Y, SEO K, et al. Clinical and magnetic resonance imaging features in acute ischemic stroke with early wallerian degeneration: a case-control study[J]. BMC Neurol, 2025, 25(1): 170.
doi: 10.1186/s12883-025-04179-4 |
| [20] |
SMITH S M, JOHANSEN-BERG H, JENKINSON M, et al. Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics[J]. Nat Protoc, 2007, 2(3): 499-503.
doi: 10.1038/nprot.2007.45 pmid: 17406613 |
| [21] |
VILLAIN N, CHÉTELAT G, GRASSIOT B, et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer's disease: a voxelwise PiB-PET longitudinal study[J]. Brain, 2012, 135: 2126-2139.
doi: 10.1093/brain/aws125 pmid: 22628162 |
| [22] |
GREICIUS M D, FLORES B H, MENON V, et al. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus[J]. Biol Psychiatry, 2007, 62(5): 429-437.
doi: 10.1016/j.biopsych.2006.09.020 |
| [23] |
SIMPSON R, DEVENYI G A, JEZZARD P, et al. Advanced processing and simulation of MRS data using the FID appliance (FID-A)-An open source, MATLAB-based toolkit[J]. Magn Reson Med, 2017, 77(1): 23-33.
doi: 10.1002/mrm.26091 pmid: 26715192 |
| [24] |
NEAR J, HARRIS A D, JUCHEM C, et al. Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: Experts' consensus recommendations[J]. NMR Biomed, 2021, 34(5): e4257.
doi: 10.1002/nbm.v34.5 |
| [25] |
LAUDADIO T, MASTRONARDI N, VANHAMME L, et al. Improved Lanczos algorithms for blackbox MRS data quantitation[J]. J Magn Reson, 2002, 157(2): 292-297.
pmid: 12323148 |
| [26] |
PROVENCHER S W. Automatic quantitation of localized in vivo 1H spectra with LCModel[J]. NMR Biomed, 2001, 14(4): 260-264.
doi: 10.1002/nbm.v14:4 |
| [27] |
HUI S C N, SALEH M G, ZÖLLNER H J, et al. MRSCloud: A cloud-based MRS tool for basis set simulation[J]. Magn Reson Med, 2022, 88(5): 1994-2004.
doi: 10.1002/mrm.29370 pmid: 35775808 |
| [28] |
BAESHEN A, WYSS P O, HENNING A, et al. Test-retest reliability of the brain metabolites GABA and Glx With JPRESS, PRESS, and MEGA-PRESS MRS sequences in vivo at 3T[J]. J Magn Reson Imaging, 2020, 51(4): 1181-1191.
doi: 10.1002/jmri.v51.4 |
| [29] |
MARGULIES D S, GHOSH S S, GOULAS A, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization[J]. Proc Natl Acad Sci U S A, 2016, 113(44): 12574-12579.
doi: 10.1073/pnas.1608282113 |
| [30] |
LEECH R, SHARP D J. The role of the posterior cingulate cortex in cognition and disease[J]. Brain, 2013, 137(1): 12-32.
doi: 10.1093/brain/awt162 |
| [31] |
WOOD E T, ERCAN A E, BRANZOLI F, et al. Reproducibility and optimization of in vivo human diffusion-weighted MRS of the corpus callosum at 3 T and 7 T[J]. NMR Biomed, 2015, 28(8): 976-987.
doi: 10.1002/nbm.v28.8 |
| [32] |
TAL A. The future is 2D: Spectral-temporal fitting of dynamic MRS data provides exponential gains in precision over conventional approaches[J]. Magn Reson Med, 2023, 89(2): 499-507.
doi: 10.1002/mrm.29456 pmid: 36121336 |
| [33] |
CLARKE W T, LIGNEUL C, COTTAAR M, et al. Universal dynamic fitting of magnetic resonance spectroscopy[J]. Magn Reson Med, 2024, 91(6): 2229-2246.
doi: 10.1002/mrm.30001 pmid: 38265152 |
| [34] |
SIMICIC D, ZÖLLNER H J, DAVIES-JENKINS C W, et al. Model-based frequency-and-phase correction of 1H MRS data with 2D linear-combination modeling[J]. Magn Reson Med, 2024, 92(5): 2222-2236.
doi: 10.1002/mrm.v92.5 |
| [35] | ZHAN H L, FANG Q Y, LIU J W, et al. Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network[J]. Acta Phys-Chim Sin, 2025, 41(2), 100017. |
| 詹昊霖, 房启元, 刘佳伟, 等. 基于轻量级深度神经网络的核磁共振波谱降噪[J]. 物理化学学报, 2025, 41(2): 90-97. | |
| [36] |
GENOVESE G, PALOMBO M, SANTIN M D, et al. Inflammation-driven glial alterations in the cuprizone mouse model probed with diffusion-weighted magnetic resonance spectroscopy at 11.7 T[J]. NMR Biomed, 2021, 34(4): e4480.
doi: 10.1002/nbm.4480 pmid: 33480101 |
| [37] |
DE MARCO R, RONEN I, BRANZOLI F, et al. Diffusion-weighted MR spectroscopy (DW-MRS) is sensitive to LPS-induced changes in human glial morphometry: A preliminary study[J]. Brain Behav Immun, 2022, 99: 256-265.
doi: 10.1016/j.bbi.2021.10.005 |
| [38] |
ERCAN E, MAGRO-CHECA C, VALABREGUE R, et al. Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites[J]. Brain, 2016, 139: 1447-1457.
doi: 10.1093/brain/aww031 pmid: 26969685 |
| [39] |
WOOD E T, RONEN I, TECHAWIBOONWONG A, et al. Investigating axonal damage in multiple sclerosis by diffusion tensor spectroscopy[J]. J Neurosci, 2012, 32(19): 6665-6669.
doi: 10.1523/JNEUROSCI.0044-12.2012 pmid: 22573688 |
| [1] | 陈茜, 刘思婕, 蔡悦, 程琳琳, 王旭霞, 康彦, 林富春, 雷皓. 致痫剂量尼古丁对青少年雌性大鼠海马结构的影响[J]. 波谱学杂志, 2025, 42(4): 345-354. |
| [2] | 李露, 高勇, 周妤盼. 基于T2WI与DWI多参数MRI纹理特征融合的前列腺癌预测模型构建[J]. 波谱学杂志, 2025, 42(4): 355-363. |
| [3] | 李英豪, 王丽辉, 王苏成, 朱中旗, 黄长栋, 李仁峰, 曹开明, 胡海洋, 贾一鸣, 梁松涛, 杨光, 路青, 汪红志. 胰腺自动分割与区域定量及糖尿病评估研究[J]. 波谱学杂志, 2025, 42(4): 378-389. |
| [4] | 易春海, 李芳, 杨晓云. 氟醚菌酰胺波谱学数据全归属[J]. 波谱学杂志, 2025, 42(4): 429-436. |
| [5] | 张明玉, 肖洒, 石胜杰, 张学成, 周欣. 超极化129Xe MRI的多模态增强去噪扩散模型研究[J]. 波谱学杂志, 2025, 42(4): 364-377. |
| [6] | 郑佳琪, 王意浓, 元思文, 尹田鹏. 4-异丙氧基-1-(三氟乙酰基)萘的结构解析和NMR数据完整归属[J]. 波谱学杂志, 2025, 42(4): 437-444. |
| [7] | 张媛媛, 汪鹏程, 李滔, 胡锐, 杨运煌, 刘买利. HDX-NMR与HDX-MS在蛋白质结构动力学研究中的应用与进展[J]. 波谱学杂志, 2025, 42(4): 445-456. |
| [8] | 汤世豪, 杨谨毓, 徐雅洁, 王亚, 彭博文, 高宇昊, 杨晓冬. 一种用于低场磁共振波谱仪的圆极化线圈设计[J]. 波谱学杂志, 2025, 42(3): 308-320. |
| [9] | 李科言, 程鑫, 陈俊飞, 曹丽, 黄臻, 刘朝阳. 用于低场NMR的低噪声前置放大器研制[J]. 波谱学杂志, 2025, 42(3): 321-333. |
| [10] | 隋美菊, 张磊, 王瑞芳, 骆盈盈, 李莎, 丘茂松, 徐秋怡, 陈代钦, 陈世桢, 周欣. MRI示踪的纳米酶用于级联反应增强的免疫治疗[J]. 波谱学杂志, 2025, 42(3): 231-248. |
| [11] | 刘颖, 袁斌华, 章浩伟. 便携式磁共振多源射频脉冲发生器设计[J]. 波谱学杂志, 2025, 42(3): 285-298. |
| [12] | 寇新慧, 张玉冰. 含氨基酸单元手性脲的对映体识别性能研究[J]. 波谱学杂志, 2025, 42(3): 221-230. |
| [13] | 马滢雪, 赵晏强, 杨晓冬, 蒋滨, 陶诚. 我国高场及超高场磁共振成像设备研制和市场化的机遇与挑战[J]. 波谱学杂志, 2025, 42(3): 334-344. |
| [14] | 江超超, 姚守权, 徐俊成, 蒋瑜. 宽频磁共振微线圈设计[J]. 波谱学杂志, 2025, 42(3): 299-307. |
| [15] | 舒炜. B超和MRI在胎儿骨骼异常中的诊断价值分析[J]. 波谱学杂志, 2025, 42(3): 265-274. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||